• 제목/요약/키워드: Pressurized-water reactor (PWR)

검색결과 233건 처리시간 0.027초

가압경수형 원자로 부하추종 운전시 제논진동 최적화 (Optimization for Xenon Oscillation in Load Following Operation of PWR)

  • 김건중;오성헌;박인용
    • 대한전기학회논문지
    • /
    • 제38권11호
    • /
    • pp.861-869
    • /
    • 1989
  • 본 논문에서는 폰트라이긴의 최대원리를 이용한 가압경수형 원자로(PWR)의 부하추종 운전시 제논진동 최적화 문제가 제시되었다. 최적화 모델은 2차 목적함수를 갖고 있는 최적 추적제어문제로 정식화 하였으며, 1군 확산방정식과 제논-아이오다인 동특성 방정식을 등호 제약조건으로 고려하였다. 최적화 모델에 최대원리를 적용하므로서, 문제는 제약조건이 없는 단일시간 문제로 분리되었으며, 분리된 부 문제는 공액 경사법을 이용하여 최적화 하였다. 계산결과는 제논진동이 최소화되어 원자로가 규정된 출력분포를 유지하면서 전력계총에서 요구하는 출력을 잘 추종 하였다.

Optimal design of passive containment cooling system for innovative PWR

  • Ha, Huiun;Lee, Sangwon;Kim, Hangon
    • Nuclear Engineering and Technology
    • /
    • 제49권5호
    • /
    • pp.941-952
    • /
    • 2017
  • Using the Generation of Thermal-Hydraulic Information for Containments (GOTHIC) code, thermal-hydraulic phenomena that occur inside the containment have been investigated, along with the preliminary design of the passive containment cooling system (PCCS) of an innovative pressurized water reactor (PWR). A GOTHIC containment model was constructed with reference to the design data of the Advanced Power Reactor 1400, and report related PCCS. The effects of the design parameters were evaluated for passive containment cooling tank (PCCT) geometry, PCCS heat exchanger (PCCX) location, and surface area. The analyzed results, obtained using the single PCCT, showed that repressurization and reheating phenomena had occurred. To resolve these problems, a coupled PCCT concept was suggested and was found to continually decrease the containment pressure and temperature without repressurization and reheating. If the installation level of the PCCX is higher than that of the PCCT, it may affect the PCCS performance. Additionally, it was confirmed that various means of increasing the external surface area of the PCCX, such as fins, could help improve the energy removal performance of the PCCS. To improve the PCCS design and investigate its performance, further studies are needed.

核燃料의 構造力學

  • 김병구
    • 기계저널
    • /
    • 제22권3호
    • /
    • pp.169-174
    • /
    • 1982
  • 우리나라는 1978 년 고리 1호기의 가동을 효시로 고리, 월성, 영광, 울진에 8기의 원자력발전소를 건설중에 있고 앞으로도 후속기의 착공이 계속될 전망이다. 노형별로 보면 월성1호기가 카나다 에서 개발된 가압식중수로(pressurized water reactor, PWR형)이다. 이 두 노형의 가장 큰 차이 점은 천연우라늄과 농축우라늄을 각각 사용한다는 핵주기상의 차이에 있고 따라서 핵연료집합 체의 구조와 노심관리상에는 큰 차이가 있다. 본 해설을 현재 우리나라에서는 건설되고 있는 PWR형과 CANDU형 원자로 핵연료를 중심으로 이들 각각의 구조, 설계, 재질상의 특성과 지금 까지 밝혀진 핵연료 파혼현상을 고찰하고 이를 대비한 시험평가분야를 검토함으로써 앞으로 다 가올 핵연료 국산화 시대에 도움이 되리라 믿는다.

  • PDF

PROGRESS IN NUCLEAR FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeon, Kyeong-Lak;Jang, Young-Ki;Park, Joo-Hwan;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제41권4호
    • /
    • pp.493-520
    • /
    • 2009
  • During the last four decades, 16 Pressurized Water Reactors (PWR) and 4 Pressurized Heavy Water Reactors (PHWR) have been constructed and operated in Korea, and nuclear fuel technology has been developed to a self-reliant state. At first, the PWR fuel design and manufacturing technology was acquired through international cooperation with a foreign partner. Then, the PWR fuel R&D by Korea Atomic Energy Research Institute (KAERI) has improved fuel technology to a self-reliant state in terms of fuel elements, which includes a new cladding material, a large-grained $UO_2$ pellet, a high performance spacer grid, a fuel rod performance code, and fuel assembly test facility. The MOX fuel performance analysis code was developed and validated using the in-reactor test data. MOX fuel test rods were fabricated and their irradiation test was completed by an international program. At the same time, the PWR fuel development by Korea Nuclear Fuel (KNF) has produced new fuel assemblies such as PLUS7 and ACE7. During this process, the design and test technology of fuel assemblies was developed to a self-reliant state. The PHWR fuel manufacturing technology was developed and manufacturing facility was set up by KAERI, independently from the foreign technology. Then, the advanced PHWR fuel, CANFLEX(CANDU Flexible Fuelling), was developed, and an irradiation test was completed in a PHWR. The development of the CANFLEX fuel included a new design of fuel rods and bundles.. The nuclear fuel technology in Korea has been steadily developed in many national R&D programs, and this advanced fuel technology is expected to contribute to a worldwide nuclear renaissance that can create solutions to global warming.

Debris transport visualization to analyze the flow characteristics in reactor vessel for nuclear power plants

  • Song, Yong Jae;Lim, Dong Seok;Heo, Min Beom;Kim, Beom Kyu;Lee, Doo Yong;Jo, Daeseong
    • Nuclear Engineering and Technology
    • /
    • 제53권12호
    • /
    • pp.4003-4013
    • /
    • 2021
  • During the long-term cooling (LTC) phase of a loss-of-coolant accident (LOCA) in a pressurized water reactor (PWR), water is supplied from the containment sump to the reactor coolant system (RCS) by the flooded sump water to the Reactor Vessel (RV) through the broken pipes. As part of the technical efforts for resolving GSI-191 [( Reid and Crytzer, May. 2007) 1, consideration is needed for the consequences of debris penetrating the sump screen and propagating downstream into the RV. Injection of debris (fiberglass) into the RV during the LTC recirculation phase needs special attention to assure that reactor core cooling is maintained. The point of concern is the potential for debris to adversely affect the reactor core flow paths or heat transfer [2]. However, all the experiments for proving the coolability of RV have been done with the assumption of the most of debris would be transferred to the RV and the bottom nozzle of the FAs. The purpose of the tests is to quantify the amount of the debris that would be accumulated at the lower plenum and the debris that passes through the FAs since non-conservatism of other researches assumptions that have been used in the past experimental or analytical programs.

A Study on the Crystalline Boron Analysis in CRUD in Spent Fuel Cladding Using EPMA X-ray Images

  • Jung, Yang Hong;Baik, Seung-Je;Jin, Young-Gwan
    • Corrosion Science and Technology
    • /
    • 제19권1호
    • /
    • pp.1-7
    • /
    • 2020
  • Chalk River Unidentified Deposits (CRUDs) were collected from the Korean pressurized water reactor (PWR) plant (A, B, and C) where the axial offset anomaly (AOA) occurred. AOA, also known as a CRUD-induced power shift, is one of the key issues in maintaining stable PWR plant operations. CRUDs were sampled from spent nuclear fuel rods and analyzed using an electron probe micro-analyzer (EPMA). This paper describes the characteristics of boron-deposits from the CRUDs sampled from twice-burnt assemblies from the Korean PWR. The primary coolant of a PWR contains boron and lithium. It is known that boron deposition occurs in a thick CRUD layer under substantial sub-cooled nucleate boiling (SNB). The results of this study are summarized as follows. Boron was not found at the locations where the existence was confirmed in simulated CRUDs, in other words, the cladding and CRUD boundaries. Nevertheless, we clearly observed the presence of boron and confirmed that boron existed as a lump in crystalline form. In addition, the study confirmed that CRUD existed in a crystal form with a unique size of about 10 ㎛.

가압경수로 주증기관 파단시 증기발생기 2차측 과도 열수력 응답에 미치는 오리피스형 유량제한기의 영향 (EFFECTS OF AN ORIFICE-TYPE FLOW RESTRICTOR ON THE TRANSIENT THERMAL-HYDRAULIC RESPONSE OF THE SECONDARY SIDE OF A PWR STEAM GENERATOR TO A MAIN STEAM LINE BREAK)

  • 조종철;민복기
    • 한국전산유체공학회지
    • /
    • 제20권3호
    • /
    • pp.87-93
    • /
    • 2015
  • In this study, a numerical analysis was performed to simulate the thermal-hydraulic response of the secondary side of a steam generator(SG) model equipped with an orifice-type SG outlet flow restrictor to a main steam line break(MSLB) at a pressurized water reactor(PWR) plant. The SG analysis model includes the SG upper steam space and the part of the main steam pipe between the SG outlet and the broken pipe end. By comparing the numerical calculation results for the present SG model to those obtained for a simple SG model having no flow restrictor, the effects of the flow restrictor on the thermal-hydraulic response of SG to the MSLB were investigated.

삽입 및 이동 가능한 연료봉 지지부의 지지격자 형상 (Spacer Grid Assembly with Sliding Fuel Rod Support)

  • 송기남;이상훈
    • 대한기계학회논문집A
    • /
    • 제34권7호
    • /
    • pp.843-850
    • /
    • 2010
  • 지지격자체는 경수로 핵연료집합체의 가장 중요한 핵심 구조부품이다. 지지격자체 설계시의 고려사항은 원자로 운전중에 연료봉의 지지건전성을 유지하도록 하는 것이다. 본 연구에서는 연료봉이 유동기인진동에 의해서 진동할 때 연료봉과 연료봉 지지부 사이에서 상대변위를 완화해 줌으로서 연료봉의 프레팅 마모손상 가능성을 감소시킬 수 있는 이동 가능한 연료봉 지지부로 구성된 새로운 지지격자체 형상을 제안하였다. 아울러 제안된 이동 가능 지지부의 연료봉 지지특성을 유한요소해석을 통해 분석하였다.

THE STATUS AND PROSPECT OF DUPIC FUEL TECHNOLOGY

  • Yang Myung-Seung;Choi Hang-Bok;Jeong Chang-Joon;Song Kee-Chan;Lee Jung-Won;Park Geun-Il;Kim Ho-Dong;Ko Won-Il;Park Jang-Jin;Kim Ki-Ho;Lee Ho-Hee;Park Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.359-374
    • /
    • 2006
  • Since 1991, Korea, Canada and United States have performed the direct use of spent pressurized water reactor (PWR) fuel in the Canada deuterium uranium (CANDU) reactors (DUPIC) fuel development project. Unlike the Tandem fuel cycle, which requires a wet reprocessing, the DUPIC fuel technology can directly refabricate CANDU fuels from the PWR spent fuel and, therefore, is recognized as a highly proliferation-resistant fuel cycle technology, which can be adopted even in non-proliferation treaty countries. The Korea Atomic Energy Research Institute (KAERI) has fabricated DUPIC fuel elements in a laboratory-scale remote fuel fabrication facility. KAERI has demonstrated the fuel performance in the research reactor, and has confirmed the operational feasibility and safety of a CANDU reactor loaded with the DUPIC fuel using conventional design and analysis tools, which will be the foundation of the future practical and commercial uses of DUPIC fuel.

A Study of Neutronics Effects of the Spacer Grids in a Typical PWR via Monte Carlo Calculation

  • Tran, Xuan Bach;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.33-42
    • /
    • 2016
  • Spacer grids play an important role in maintaining the proper form of the fuel assembly structure and ensuring the safety of reactor core design. This study applies the Monte Carlo method to the analysis of the neutronics effects of spacer grids in a typical pressurized water reactor (PWR). The core problem used to analyze the neutronics effects of spacer grids is a modified version of Korea Advanced Institute of Science and Technology benchmark problem 1B, based on an Advanced Power Reactor 1400 (APR1400) core model. The spacer grids are modeled and added to this test problem in various ways. Then, by running MCNP5 for all cases of spacer grid modeling, some important numerical results, such as the effective multiplication factor, the spatial distributions of neutron flux, and its energy spectrum are obtained. The numerical results of each case of spacer grid modeling are analyzed and compared to assess which type has more advantages in accuracy of numerical results and effectiveness in terms of geometry building. The conclusion is that the most realistic modeling for Monte Carlo calculation is the "volume-preserving" streamlined heterogeneous spacer grids, but the "banded" dissolution spacer grids modeling is a more practical yet accurate model for routine (deterministic) analysis.