• Title/Summary/Keyword: Pressuremeter

Search Result 63, Processing Time 0.024 seconds

Characteristics of Ground Improvement by Compaction Grouting System in Filled Ground (매립토층에서 CGS에 의한 지반개량특성에 관한 연구)

  • 천병식;여유현;정영교;정완균;정의원;김우종
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.425-432
    • /
    • 2001
  • Compaction Grouting System, the method which makes ground compact by injection of low slump mortar, Is widely used for reinforcement of soft ground, restoration of structures happened differential settlement, underpinning and restoration of damaged dam core. The quantitive analysis of ground improvement for this method has not performed yet. So, design parameters about thls method must be studied through performance of CGS in various types of soil to make CGS adaptable widely. In this study PBT, SPT and field density test were performed for analysis of the characteristics of ground improvement and pressuremeter and inclinometer were installed for analysis of the characteristics of compaction in adjacent ground. In this paper, denoted much effects for filled ground that increasing of the bearing capacity, confirming the displacement of adjacent ground and the effective radius of injection.

  • PDF

Analysis of cavity expansion and contraction in unsaturated residual soils

  • Lukosea, Alpha;Thiyyakkandi, Sudheesh
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.405-419
    • /
    • 2022
  • Cavity expansion and contraction solutions for cylindrical and spherical cavities in unsaturated residual soils are presented in this paper. Varying soil state in the plastic zone is accounted by a numerical approach, wherein an element-by-element discretization of the plastic zone of both expanding and contracting cavities is carried out. Unlike existing methods utilizing self-similarity technique, the solution procedure enables the prediction of entire soil-state at any stage of expansion and subsequent contraction. It is also applicable for both cavity creation and expansion problems. The approach adopts constant contribution of suction to effective stress (constant Xs drainage condition) for analysis. The analysis procedure is validated by interpreting the previously reported pressuremeter test results in lateritic residual soil. The typical cavity expansion and contraction characteristics of unsaturated Indian lateritic soil were then examined using this solution procedure. The effect of initial soil-state on cavity limit pressure, plastic radius, reverse yield pressure, and reverse plastic radius are also presented.

Evaluation of Ground Properties for Marine Ground in Pusan Area using Elastometer-200 Type (Elastometer-200을 이용한 부산지역 해저지반의 지반특성치 평가)

  • 김동철;최용규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.83-94
    • /
    • 2000
  • Applicability of PMT in domestic area, test procedure, and methods determining the shear strength parameters $(cu,\phi)$and deformation character (E) using PMT results were studied. At six test boreholes of three construction sites in Pusan, PMT using Elastometer-200 type was performed. The problems occurring during tests were investigated and the test results were analysed.In-situ total horizontal stress could be obtained by observation from pressuremeter curve and limit pressure, p could be determined by $p-log(\Deltav/v)$ method. Shear strength parameters$(cu,\phi)$ and deformation modulus(G, E) could be determined from the PMT results. But effective friction angle and undrained cohesion determined from PMT results were greater than those obtained from laboratory test.Using PMT results, marine soil in Pusan could be classified approximately. Net limite pressure values were in the range of 6.4~22.5 $kg/cm^2$, in clay, 2.2~30.$kg/cm^2$, in sand, 13.0~58.0$kg/cm^2$, in weathered soil and 47.0~190.0 $kg/cm^2$, in weathered rock. Also, Em/p values were in the range of 2.4~7.0 in clay, 2.6~12.1 in sand, 6.8~17.1 in weathered soil and 7.2~29.6 in weathered rock.

  • PDF

A Study on the Evaluation of Smear Zone by In-situ Tests (현장시험에 의한 Smear Zone의 평가)

  • 이장덕;구자갑
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.207-216
    • /
    • 2003
  • To evaluate the smear zone caused by the drain installation, 10 piezometers were installed in the typical soft ground in the western coastal area of Korea. The dynamic pore water pressure developed during the drain installation was monitored using piezometers installed at a distance of 10cm, 20cm, 30cm, 40cm and 50cm from the location of the drain. The decay of pore pressure with time after pushing piezometers to depths of 5 meters and 7 meters during the drain installation was monitored to assess flow and consolidation characteristics of the soil after disturbance of the soil due to the drain installation. The drain installation results in shear strain and displacement of the soil and it decreases the permeability of the soil. Hence, the comparison between dissipation of the pore water pressure process in 10 pieszometers before as well as after installation of the drain indicated the diameter of disturbance zone and smear zone, which is related to the cross-sectional dimension of the mandrel. In addition, Cone-pressuremeter(CPM) tests were performed to obtain rigidity index of the soil for an interpretation of the dissipation processes. It has been evaluated by in-situ tests that the smear zone is from 3.0 to 3.6 times of the cross-sectional dimension of the mandrel. The hydraulic conductivity expressed in terms of the coefficient of consolidation after the drain installation was calculated from 3 to 8 times decrease evaluated by Teh & Houlsby equation and CPM test results.

Evaluation of Nonlinear Deformational Characteristics of Soils from Laboratory and Field Tests (실내시험 및 현장시험을 통한 지반의 비선형 변형특성 평가)

  • 김동수;권기철
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.89-100
    • /
    • 1997
  • It is very improtant to evaluate the reliable nonlinear deformational characteristics of soils not only in the analysis of geotechnical structures under working stress conditions but also for the soil dynamic problems. Field testings such as crosshole and pressuremeter tests can be used to determine the modulus of soils under in-situ conditions, but it is not possible to determine the modulus over the entire strain amplitude range. Laboratory methods such as resonant column 1 torsional shear test can be used to determine the modulus over the whole strain amplitude range, but it is very difficult to obtain the representative undisturbed samples on the sixte. For the reliable evaluation of nonlinear deformation characteristics of soils on a typical site, small strain modulus obtained from field testy and nomalized modulus reduction curve determined by laboratory bests need to be combined. In this paper, laboratory and Held testy were performed at a sixte which consisted of granite wearthered residual boils to evaluate the nonlinear deformational characteristics of coils such as the effects of strain amplitude, loading frequency, confining pressure and sample disturbance. It has been shorn that when the effects of these factors are properly taken into account, the stiffness values evaluated by various field and labrotary tests are comparable to each other fairly well. Finally, the procedure to evaluate the nonlinear deformstional characteristics of the sixte was proposed.

  • PDF

An Evaluation of Empirical Prediction Equation for Deformation Modulus of Rock Masses by Field Measurements (암반변형계수의 현장시험을 통한 경험적 추정식의 적정성 평가)

  • Chun Byung-Sik;Lee Yong-Jae;Ahn Kyung-Chul;Shin Jae-Keun;Jung Sang-Hoon
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.251-258
    • /
    • 2006
  • In this paper, the applicability to the Korean rock condition of using the deformation moduli based on Rock Mass Rating (RMR) and Pressuremeter Test (PMT) is evaluated. The correlations among deformation moduli and various rock properties were also analyzed. It appears that the existing correlations using RMR overestimate the deformation moduli and wide variation was found between predicted moduli using these correlations and measured values. As for the correlations among the deformation moduli and various rock properties, Rock Quality Designation (RQD) and unconfined compressive strength (UCS) were found to correlate to deformation moduli reasonably well, but joint spacing and joint conditions appear to correlate poorly to RQD and UCS. Additionally, groundwater can not be correlated with the modulus values. While the depth has very little contribution to deformation modulus, it should be factored in the simple regression analyses with various rock mass properties, especially with the correlations made with UCS, RQD etc. With the deficiencies of these correlations, more in depth analysis techniques such as multivariate correlations may be to reliably estimate deformation modulus of rock mass.

Evaluation of Engineering Properties of CLSM using Weathered Granite Soils (화강풍화토를 이용한 CLSM의 공학적 특성평가)

  • Lim, Yu-Jin;Seo, Chang-Beom
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.19-26
    • /
    • 2009
  • In this study, flowable backfill made with weathered granite soil is tested to provide basic engineering properties that can be used as design input to overcome settlement problems in road pavement due to low stiffness of backfill which is generated by porosity of the soil. For design purpose, a proper mixing ratio is developed first. Then several test methods including FF/RC, PMT and LDWT including axial compression test are adapted for checking stiffness and measuring axial strength of the material separately that can be used for design values.

Estimation of deformation modulus for rock mass using stress distribution under ground in Large Plate Load Test (대형평판재하시험의 지중응력 측정결과를 이용한 연암의 변형계수 산정)

  • Park, Won-Tae;Lee, Min-Hee;Choi, Yong-Kyu;Kim, Seok-Chan;Kim, Jung-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.539-545
    • /
    • 2010
  • The field plate test has a good potential for determining since it measures both plate pressure and settlement. The deformation modulus of rock mass is differently measured for status of structures. The values of deformation modulus are obtained from laboratory test (uniaxial and triaxial test) and field test (pressuremeter test). Plate load test should be conducted by different loading plate sizes for geological structure of rock mass and scale of structures. In this paper, large plate load tests were performed to predict of structure's behavior and evaluate the ultimate bearing capacity of the foundation on soft rock. Simultaneously, deformation modulus of rock mass was estimated by back analysis of stresses measured in field test under rock mass. Finally, we verified the validation of deformation modulus of rock mass through result of large plate load test and numerical simulation.

  • PDF

A Case Study on Geotechnical Properties and Weathering Degree of Weathered Granite Rock (화강 풍화암의 지반특성 및 풍화도 평가에 대한 사례 연구)

  • Lee, Seung-Hwan;Yoo, Byeong Soo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.127-139
    • /
    • 2017
  • Site investigation including boring and various in-situ borehole test (Pressuremeter test, Borehole shear test, Downhole test, Suspension PS logging, Density logging) and X-ray fluorescence analysis for rock core sample were performed to estimate geotechnical properties and weathering degree of weathered granite rock in Goyang. Deformation modulus, shear strength parameter and shear wave velocity estimated through in-situ borehole test had a tendency to increase with depth. And several chemical weathering indices evaluated by X-ray fluorescence analysis had a general tendency of reducing weathering degree in accordance with depth. Also, relationship between VR determined as a representative weathering index and the geotechnical properties was analyzed.

Assessment of London underground tube tunnels - investigation, monitoring and analysis

  • Wright, Peter
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.239-262
    • /
    • 2010
  • Tube Lines has carried out a "knowledge and investigation programme" on the deep tube tunnels comprising the Jubilee, Northern and Piccadilly lines, as required by the PPP contract with London Underground. Many of the tunnels have been in use for over 100 years, so this assessment was considered essential to the future safe functioning of the system. This programme has involved a number of generic investigations which guide the assessment methodology and the analysis of some 5,000 individual structures. A significant amount of investigation has been carried out, including ultrasonic thickness measurement, detection of brickwork laminations using radar, stress measurement using magnetic techniques, determination of soil parameters using CPT, pressuremeter and laboratory testing, installation of piezometers, material and tunnel segment testing, and trialling of remote photographic techniques for inspection of large tunnels and shafts. Vibrating wire, potentiometer, electro level, optical and fibre-optic monitoring has been used, and laser measurement and laser scanning has been employed to measure tunnel circularity. It is considered that there is scope for considerable improvements in non-destructive testing technology for structural assessment in particular, and some ideas are offered as a "wish-list". Assessment reports have now been produced for all assets forming Tube Lines' deep tube tunnel network. For assets which are non-compliant with London Underground standards, the risk to the operating railway has to be maintained as low as reasonably practicable (ALARP) using enhanced inspection and monitoring, or repair where required. Monitoring techniques have developed greatly during recent years and further advances will continue to support the economic whole life asset management of infrastructure networks.