• Title/Summary/Keyword: Pressure-tightness

Search Result 83, Processing Time 0.035 seconds

Analysis of Hydrogen-tightness on the Metal Sealing of a Fuel Pipe for FCEV according to Material Change of the Fitting Body (체결부 재료에 따른 FCEV 연료파이프 메탈 씰링부의 기밀성 분석)

  • Lee, J.M.;Han, E.S.;Chon, M.S.;Lee, H.W.
    • Transactions of Materials Processing
    • /
    • v.28 no.5
    • /
    • pp.266-274
    • /
    • 2019
  • Metal sealing is used to connecting the parts between valves and fuel pipes for a FCEV which utilizes hydrogen gas of 700 bar. Instead of general carbon steel, stainless steel is the primary material used to manufacture fuel pipes due to hydrogen embrittlement. The shape of deformation between metals is an important factor on the air-tightness of the metal to metal contact. Since the stainless steel pipe is hardened using the plastic forming during the tip shaping stage, this work hardening could have an effect on the deformed shape and characteristics of contact surfaces in fastening of pipes. In this paper, the deformation history of the pipe model was considered in order to analyze the hydrogen-tightness on the metal sealing part. The contact distance and the forward displacement for fastening were compared using experimental results and the simulation results. The simulation of the effect of material change on the fitting body demonstrated that the hardness or the strength of the formed tip of the pipe was designed to a proper valued level since the characteristics of the contact surface was exhibited better when the strength of the pipe was lower than that of the fitting body.

Sensitivity Analysis of Design Parameters of Air Tightness in Underground Lined Rock Cavern (LRC) for Compressed Air Energy Storage (CAES) (복공식 지하 압축공기에너지 저장공동 기밀시스템 설계변수의 민감도 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny;Ryu, Dong-Woo;Sun-Woo, Choon;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.21 no.4
    • /
    • pp.287-296
    • /
    • 2011
  • We performed a numerical modeling study of thermodynamic and multiphase fluid flow processes associated with underground compressed air energy storage (CAES) in a lined rock cavern (LRC). We investigated air tightness performance by calculating air leakage rate of the underground storage cavern with concrete linings at a comparatively shallow depth of 100 m. Our air-mass balance analysis showed that the key parameter to assure the long-term air tightness of such a system was the permeability of both concrete linings and surrounding rock mass. It was noted that concrete linings with a permeability of less than $1.0{\times}10^{-18}\;m^2$ would result in an acceptable air leakage rate of less than 1% with the operational pressure range between 5 and 8 MPa. We also found that air leakage could be effectively prevented and the air tightness performance of underground lined rock cavern is enhanced if the concrete lining is kept at a higher moisture content.

The Plan on Brassiere of Reduce Clothing Pressure for the Twenties Aged Women (20대 여성을 위한 의복압 경감 브래지어 설계)

  • Park, You-Shin
    • Journal of the Korean Society of Fashion and Beauty
    • /
    • v.4 no.3 s.9
    • /
    • pp.40-44
    • /
    • 2006
  • This study is on the brassiere of reduce clothing pressure. To set the measurements of bras for women in their 20s, considering the comfortableness in wearing and tightness, this paper conducted a questionnaire survey concerning breasts and bras as well as measurements of body and contact surface pressure. As a result of comparing the discrepancies between the lower chest circumferences of the body and the bra, it was revealed that 67.0% were wearing one that was bigger than the body size. Most of them mentioned 'feeling of tightness' as a reason(60.4%), which suggests there are problems of the total length and elasticity in the process of making bras. The favorite bra types are wire type(57.9%), mold type(24.3%), and strapless type(10.4%).it is recommended that the total length of lower chest circumference be increased. The result and the recommendations of this study are as follows: First, the total length of brassiere be increased by 5cm from the current patterns in the process of manufacturing. Second, elasticity of the lower-side tapes be extended from 120% to 170%.

  • PDF

The Optimization Study on the Test Method of Remanufactured Power Steering Oil Pump by Using FMEA (FMEA를 활용한 재제조 파워스티어링 오일펌프 시험법에 대한 최적화 연구)

  • Seo, Youngkyo;Jung, Dohyun;Yu, Sangseok;Rha, Wanyong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.1
    • /
    • pp.90-98
    • /
    • 2016
  • Currently government certified test method for an automobile remanufactured products is insufficient. Thus many automotive parts in the remanufacturing market are lacking proper evaluation criteria and production of defective products are causing customer dissatisfaction. In this paper a power steering oil pump, which requires stringent manufacturing standards, is studied by the failure mode and effect analysis approach. The research suggested that the test criteria such as discharge flow characteristic test, tightness test, pulley run-out test, pressure switch operation test, low temperature test and rotation pressure durability test should be performed to evaluate the reliability of remanufactured power steering oil pumps. As a result of tests, the performance of remanufactured power steering oil pump satisfied the evaluation criteria of pressure switch operation test and low temperature test. However, the remanufactured power steering oil pump failed to satisfy the evaluation criteria on discharge performance test, tightness test and pulley run-out test. These performance evaluation tests proved the necessity of standard process for the remanufactured power steering oil pump.

An Experimental Study on the Water Tightness of Fly Ash Antiwashout Underwater Concrete (플라이애시 수중불분리성 콘크리트의 수밀성에 관한 실험적 연구)

  • Kwon, Jung-Hyun;Kim, Bong-Ik
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.40-45
    • /
    • 2008
  • This paper describes the effects of fly ash replacement on the water tightness of antiwashout underwater concrete, which replaced the cement with fly ash from 0% to 30%. The experimental work was performed to find out the depth of permeation of concrete specimens cast in air and cured in 23 $^{\circ}C$ tap water using an open center pressure type of water permeation tester. The results showed that the permeation depth values of antiwashout underwater concrete were deeper than normal concrete, but that an admixture using fly ash during antiwashout underwater concrete casting in air made it more watertight than normal concrete according to the water permeation testing. SEM observations of the specimens of fly ash antiwashout underwater concrete showed that it wasmore packed with structures because of the pozzolan reaction of the fly ash and cement.

A Study on the Enhance of Air tightness Performance of a New Type Silding Window with horizontally Rolling Wheels (수평 구름 바퀴가 적용된 신 유형 미서기 창문의 기밀성능 개선에 관한 연구)

  • Jang, Hyok-Soo;Kim, Young-Il;Chuung, Kwang-Seop
    • Journal of Energy Engineering
    • /
    • v.24 no.4
    • /
    • pp.63-70
    • /
    • 2015
  • Crevices between window and window frame cause not only heat losses but also serve path to sound transmission and infiltration of fine dusts that are harmful to humans. There were many efforts in the past to eliminate these crevices but because of the windows' indispensable function of opening and closing, it was an unsolvable problem. In this study, a new type sliding window is developed by applying horizontally rolling wheels to implement a surface sealing which is excellent for enhancing air tightness. To evaluate the feasibility of the newly developed window, forces for opening and closing, durability and air tightness were testet according to Korean Testing Standards. Force for opening a 2000 N window is 30 N. It endured 100,000 cycles of opening and closing. Infiltration was $0.00m^3/(m^2h)$ for a pressure difference of 10 Pa. Since this window has few moving parts, it has favorable features of low cost and few breakdown.

The Field Measurement of Airtightness in the Apartment Buildings (신축공동주택의 기밀성능 실측에 관한 연구)

  • Park, Won seok;Yoon, Jae Ock
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.43-50
    • /
    • 2003
  • Nowdays the apartment is a main type of modernized residential buildings. According to the improvement of construction techniques and functions of windows and doors, recent apartments are enhanced air tightness of windows, doors and building envelopes. As Infiltration is decreased and natural ventilation is reduced, energy could be saved in winter. However, indoor air quality is bad. The air Infiltration of a building could be enlarged by physical actions, such as building designs, constructions and reduction of air tightness which is caused by aging. This research analyzes and measures with KNS-4000P (Sapporo air tightness measurement) the air tightness of the high rise apartments which is recently constructed and not occupied yet. With depressurization method, the KNS-4000 installed on the window and the indoor air-leakage was measured. At that time, Air come out from the edge of the windows and doors because of the pressure differences between indoor and outdoor. We measure the amount of the air as effective air leakage areas. This method of depressurization takes less time to measure than other methods and is less affected from other conditions. We measured infiltration of total 56 household, 29 households S apartment (total floor area : $64.42m^2$) in Balan and 29 households D apartment(total floor area : $78.21m^2$) in Chonan. As a result of the field measurements at October 2003, normalized leakage area of D apartment in Cheonan was $2.05cm^2/m^2{\sim}3.49cm^2/m^2$ (average: $2.77cm^2/m^2$) and normalized leakage area of S apartment in Balan is $1.23cm^2/m^2{\sim}1.68cm^2/m^2$ (average: $1.5cm^2/m^2$).

Development of Optical Device Housing Compacted Using SUS304L Granulated Powders

  • Suzuki, Hironori;Hara, Toshihiro;Ogino, Yukinobu;Sato, Yasushi;Tomota, Yo
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.754-755
    • /
    • 2006
  • In order to develop the SUS304L housing by powder metallurgy for an optical device useful for the FTTH communication system, the optimum compacting pressure and sintering temperature were investigated using granulated powder as the material to satisfy high air-tightness and high laser-weldability. Then the laser-welding test of specimen made under the optimum condition was carried out to observe welding sputters.

  • PDF

Experimental Study on Airtightness Performance of the House with High Levels of Insulation and Airtight Construction (고기밀 고단열 주택의 기밀성능에 관한 실험적 연구)

  • Shin, U-Cheul;Yoon, Jong-Ho;Baek, Nam-Choon
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.4
    • /
    • pp.61-67
    • /
    • 2005
  • The purpose of this study is to evaluate the air tightness of Zero Energy Solar House(ZeSH) and to propose the construction improvement of junctions and penetrations where air infiltration was identified. Air leakage rate were measured by means of blower door test in accordance with ASTM E779-87. The results showed that ZeSH has an excellent airtightness with ACH50/20 (air change per hour at a pressure difference of 50 Pa between inside outside) of 0.34hr-1 and leakage class E by normalized leakage area of ASHRAE.

Field Measurements and Numerical Analysis on the Efficiency of Water Curtain Boreholes in Underground Oil Storages (지하 유류비축기지 수벽공의 효율에 관한 현장계측 및 수치 해석 연구)

  • 이경주;이희근
    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.79-86
    • /
    • 1998
  • This study was performed to suggest to suggest suitable design conditions of water curtain system through analysis on pressure down in boreholes by hydraulic tests carried out I construction fields for underground oil storages. The influence by hydraulic conductivities of rock mass around boreholes on pressure down in boreholes was analysed. The relationship between array of boreholes and their pressure down was also analysed. Groundwater flow analysis on crude oil and LPG storages was carried out to evaluate results of field tests and to investigate distribution of hydraulic gradient in rock mass around cavern using finite difference method. As the results, hydraulic tests showed that pressure down in boreholes was inverse proportional to the hydraulic conductivity of surrounding rock mass. The rate of pressure down of boreholes was not influenced by water curtain system more than 20m over cavern and was proportional to installation interval of boreholes. The hydraulic gradient in rock mass around cavern was proportional to distance and interval of boreholes and its value was not satisfactory to oil tightness condition in case of no water curtain system.

  • PDF