• 제목/요약/키워드: Pressure-swirl spray

검색결과 155건 처리시간 0.022초

스월 분사기 분무 혼합충돌지역에서의 중첩각도에 관한 실험적 연구 (Experimental Study on the Merged Angle of Mixed-Interaction Regions of Sprays from Two Pressure-Swirl Injectors)

  • 이영선;홍문근;이수용
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.195-200
    • /
    • 2011
  • The pressure-swirl atomizer is widely used for the injectors in liquid rocket engines thanks to its high performance atomization and broad stability margin range. Spray mixed-interaction is an important area of study especially in cases where the propellant is mixed by spray interaction after an oxidant and a fuel are discharged separately. This interaction of sprays results in a significant modification of the spray characteristics such as the spatial evolution of the sprays. Experiments are conducted by a photographic technique to quantify the merged angle of the interaction regions of sprays from two pressure-swirl injectors. The experimental results show that the merged angle is mainly determined by the momentum flux ratios between two swirled sprays.

와류형 고압인젝터의 초기분무의 분열 과도현상 (Transient Breakup Phenomena of Initial Spray from High-Pressure Swirl Injector)

  • 최동석;김덕줄;고장권
    • 대한기계학회논문집B
    • /
    • 제22권8호
    • /
    • pp.1132-1140
    • /
    • 1998
  • The disintegration process of initial spray from high-pressure swirl injector was investigated at different injection pressures. The transient breakup phenomena that were difficult to observe at high injection pressure were easily observed at the low injection pressure of 0.4MPa. The effect of fuel remained inside a nozzle hole volume on the penetration of initial spray was also investigated. The disintegration process of initial spray could be classified four regions: the formation of mushroom shape, the first collision, the second collision, and the development of spray, The liquid film of cup shape was particularly found in the second collision region, and the growth ratio of its length and width at low and high injection pressures were compared.

BREAKUP LENGTH OF CONICAL EMULSION SHEET DISCHARGED BY PRESSURE-SWIRL ATOMIZER

  • Rhim, Jung-Hyun;No, Soo-Young
    • International Journal of Automotive Technology
    • /
    • 제2권3호
    • /
    • pp.103-107
    • /
    • 2001
  • Many researches on pressure-swirl injectors due to the variety of application have been conducted on the effects of nozzle design, operating conditions, properties of liquid and ambient conditions on the flow and spray characteristics. The breakup length of conical emulsified fuel sheet resulting from pressure-swirl atomizer using in the oil burner was investigated with the digital image processing method with neat light oil and emulsion with water content of lotto% and the surfactant content of 1-3%. The injection pressure ranged from 0.1 to 1.2 MPa was selected. The various regimes for the stage of spray development within the experimental conditions selected in this study is newly suggested in terms of Ohnesorge number and injection pressure. The breakup length for both criteria show the same tendency even though the random nature of perforation and disintegration process of liquid sheet. The stage of spray development is widely different with the physical properties of liquid atomized, mainly viscosity of liquid. The breakup length decreases smoothly with increase in the injection pressure for the lower viscous liquid.

  • PDF

바이오 디젤 혼합율이 압력식 스월노즐의 분무 특성에 미치는 영향 (Effects of the Bio-diesel Blending Rate on the Spray Characteristics of the Pressure Swirl Nozzle)

  • 윤석주
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.210-214
    • /
    • 2011
  • This paper presents the spray characteristics of the gun type burner nozzle with bio-diesel blending rate. The burner nozzle used in this experiment is a pressure swirl type nozzle. For the spray characteristics, visualization of spray was conducted to obtain the spray angle, and laser diffraction spectroscope (LDS) was used for the measurement of the droplet diameters. The results showed that the $D_{max}$, SMD and spray angle were decreased with increasing the bio-diesel blending rate and BD30 (30% bio-diesel blending rate) could be found to be the maximum blending rate for using without any modification of the gun type burner of the homesize kerosene fuel boiler.

SELF-PULSATION CHARACTERISTICS OF A SWIRL COAXIAL INJECTOR WITH VARIOUS INJECTION AND GEOMETRIC CONDITIONS

  • Im, Ji-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin;Bazarov, V.
    • 한국분무공학회지
    • /
    • 제10권3호
    • /
    • pp.29-37
    • /
    • 2005
  • The spray and acoustic characteristics of a gas/liquid swirl coaxial injector are studied experimentally. The self-pulsation is defined as a pressure and flow rate oscillations by a time-delayed feedback between liquid and gas phase. Self-pulsation has strong influences on atomization and mixing processes and accompanies painful screams. So. the spray and acoustic characteristics are investigated. Spray patterns are observed by shadow photography technique in order to determine the onset of self-pulsation. And self-pulsation boundary with Injection conditions and recess length is get. To measure the frequency of the spray oscillation. oscillation of the laser intensity which passes through spray is analyzed by Fast Fourier Transform. For acoustic tests, a PULSE System was used. Acoustic characteristics of a swirl coaxial injector are investigated according to the injection conditions. such as the pressure drop or the liquid and gas phase. and injector geometries. such as recess length and gap size between the inner and outer injector. Front the experimental results. the increase of recess length leads to the rapid increase of the sound pressure level. And as the pressure drop of the liquid phase increases. the frequency of the self?pulsation shifts to the higher frequency. The frequency of spray oscillations is the same as that of the acoustic fields by self-pulsation.

  • PDF

Spray Characteristics of Electrostatic Pressure-Swirl Nozzle for Burner Application

  • Laryea, Gabriel Nii;No, Soo-Young
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.16-23
    • /
    • 2002
  • Electrostatic pressure-swirl nozzle for practical oil burner application has been designed. The charge injection method has been used in this design, where the nozzle consists of a sharp pointed tungsten wire as a charge injector and the nozzle body grounded. The spray characteristics of the nozzles have been investigated by using an insulating liquid, i.e. kerosene without active surface agent. Breakup length of liquid decreased with an increase in applied voltage and injection pressure, while the spray angle increased with an increased in both applied voltage and injection pressure. An empirical equations have been suggested to predict the breakup length for electrostatic pressure-swirl atomizer. The experimental result was within the range of the predicted equations. The SMD decreased between the ranges of 2.8 ${\sim}$ 33% when the conventional nozzle was compared to the electrostatic with -10 kV applied to the electrode at a radial distance from 5 to 20 mm.

  • PDF

직접분사식 가솔린 선회분사기 개발에 관한 연구 III (Development of Gasoline Direct Swirl Injector III)

  • 박용국;오재건;이충원
    • 한국분무공학회지
    • /
    • 제6권4호
    • /
    • pp.39-48
    • /
    • 2001
  • The Gasoline Direct Injection(GDI) system has been highlighted due to the improvement of fuel consumption and the control of exhaust emission from gasoline engines. Main purpose of the present study is to measure spray characteristics of GDSI for real engine application. We have investigated experimentally spray tip penetration, spray angle, tip velocity and spatial spray distribution. Counter-rotating vortex grown on the spray surface plays an important role in the spray characteristics. Accordingly the spray tip penetration and tip velocity do not excess 50mm, 20m/s respectively, under 0.6MPa ambient pressure. the spray cone angle of GDSI have a same tendency to a simplex swirl atomizer.

  • PDF

Comparison of Spray Characteristics between Conventional and Electrostatic Pressure-Swirl Nozzles

  • Laryea, G.N.;No, S.Y.
    • 한국분무공학회지
    • /
    • 제11권1호
    • /
    • pp.24-29
    • /
    • 2006
  • Spray characteristics produced by conventional and electrostatic pressure-swirl nozzles for an oil burner have been studied, using kerosine as a test liquid. The charge injection mechanism is used to design the electrostatic nozzle, where specific charge density, breakup length, spray angle and mean diameter are measured and analyzed. Three nozzles with orifice diameters of 0.256, 0.308 and 0.333mm at injection pressures of 0.7, 0.9, 1.1 and 1.3 MPa are used in the study. In case of the electrostatic nozzle, voltages ranging from -5 to -12kV are applied. Comparison of the spray characteristics is made between the conventional and electrostatic nozzles. The results showed that, the electrostatic nozzle is superior to the conventional nozzle. This is due the effect of voltage on the liquid surface tension.

  • PDF

SPRAY AND COMBUSTION CHARACTERISTICS OF HYDROCARBON FUEL INJECTED FROM PRESSURE-SWIRL NOZZLES

  • Laryea Gabriel Nii;No Soo-Young
    • 한국분무공학회지
    • /
    • 제9권4호
    • /
    • pp.31-37
    • /
    • 2004
  • This paper presents spray and combustion characteristics of hydrocarbon fuel injected from pressure-swirl nozzles. Three commercial nozzles with orifice diameters of 0.256, 0.308 and 0.333mm and injection pressures ranging from 0.7 to 1.3 MPa were selected f9r the experiments. Spray characteristics such as breakup length. spray angle and drop size (SMD) were analyzed using photo image analyses and Malvern Panicle Size Analyzer. The drop size was measured with and without a blower at the same measuring locations. The flame length and width were measured using photo image analyses. The temperature distribution along the axial distance and the gas emission such as CO, $CO_2\;and\;NO_x$ were studied. The breakup length decreased with an increase in injection pressure for each nozzle but increased with an increase in nozzle orifice diameter. The spray angle increased and SMD decreased with an increase in injection pressure. The flame with an increased linearly with an increase in injection pressure and in nozzle orifice diameter. The flame temperature increased with an increase in injection pressure but decreased along the axial distance. The maximum temperatures occurred closer to the burner exit and flame at axial distance of 242mm from the diffuser tip. The experimental results showed that the level of CO decreased while that of $CO_2\;and\;NO_x$ increased with an increase in injection pressure and nozzle orifice diameter.

  • PDF

액체의 물성치와 노즐의 형상 변화에 따른 압력스월 노즐의 분무 특성 (Characteristics of Spray from Pressure-Swirl Nozzle with Different Liquid Properties and Nozzle Geometries)

  • 최윤철;정지원;김덕줄
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1813-1820
    • /
    • 2001
  • The purpose of this study was to investigate the significant characteristics in atomization process of industrial etching spray fur the design or Precise pressure-swirl nozzles. The experiment was carried out with different viscosities and densities of the liquid. The macro characteristics of liquid spray, such as the spray angle and breakup process were captured by PMAS and the micro characteristics of liquid spray. such as droplet size and velocity measurements were obtained by PDA. The droplet axial and radial velocity and SMD were measured along axial and radial direction. The RMS of two velocities was measured along radial direction. It was found that the fluid with higher kinematic viscosity resulted in the larger SMD and the lower mean droplet velocity. And we could divide breakup processes into three regions that is atomization, non-dilution and dilution one in spray of pressure-swirl nozzle. The radial as well as axial velocity of droplet played an important role in the atomization process of higher kinematic viscosity fluid.