• 제목/요약/키워드: Pressure-swirl spray

검색결과 155건 처리시간 0.025초

분사조건에 따른 기체/액체 동축형 인젝터의 분무특성에 관한 연구 (A Study on Characteristics of Gas/Liquid Coaxial Sprays Under Varying Flow Conditions)

  • 정원호;김동준;임지혁;윤영빈
    • 한국항공우주학회지
    • /
    • 제33권1호
    • /
    • pp.54-61
    • /
    • 2005
  • 기체와 액체 추진제를 사용하는 동축형 분사기의 분무특성을 조사하기 위하여 shadow graph와 mechanical patternator, PDPA를 이용한 실험을 수행하였다. 차원해석 방법을 도입하여 운동량 플럭스 비(M)와 레이놀즈 수(Re)를 기체/액체 동축형 분무의 주요 변수로 설정하였고, 실험을 통하여 전단 및 스월 동축형 분무의 특성을 거시적 및 미시적 관점에서 비교분석하였는데, 기체 추진제의 영향력이 커지는 분사조건에서 전단 및 스월 동축형 분무의 거시적 특성이 유사해짐을 확인할 수 있었다. 또한, 본 연구에서는 미시적 분무특성에 대한 분석 결과로서 분무액적 크기와 분사조건 사이의 관계식도 제시하였다.

경유차 입자상물질 저감필터(DPF) 재생용 전기수력학적 연료 후분사 노즐의 미립화 특성 평가 및 수치해석을 이용한 액적 입경별 연소 특성 평가 (Performance Evaluation of an Electrohydrodynamic Spray Nozzle for Regeneration of Particulate Matter on Diesel Particulate Filter)

  • 정성훈;박성은;김민정;조형제;황정호
    • 한국입자에어로졸학회지
    • /
    • 제8권2호
    • /
    • pp.55-68
    • /
    • 2012
  • Particulate matters (PM) which are collected into a diesel particulate filter (DPF) system have to be periodically removed by thermal oxidation. In this report, we fabricated an electrohydrodynamic-assisted pressure-swirl nozzle to spray diesel droplets finer. Atomization performance of the nozzle was evaluated using both experimental and numerical methods. Two types of nozzle designs, the charge induction type and the charge injection type, were tested. While the former generated diesel droplets of $400\;{\mu}m$ at an applied electric potential over 10 kV, the latter presented the droplets smaller than $23\;{\mu}m$ at an applied electric potential of 8 kV. The numerical simulation results showed that the reduced size of droplets caused higher evaporation of droplets and therefore the increased temperature, which would eventually increase the regeneration performance of the DPF system.

초저온 추진제를 사용하는 액체로켓용 인젝터의 수류/연소시험장치 설계 및 제작 (Design and Implementation of Cold-Flow and Hot-Fire Test Stand of a Cryogenic Propellant Injector Used in LRE)

  • 김도헌;박영일;구자예
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2010년도 제34회 춘계학술대회논문집
    • /
    • pp.61-65
    • /
    • 2010
  • 초저온 추진제를 사용하는 액체로켓용 인젝터의 개발을 위해서는 단일 인젝터의 수류/연소시험을 통해 인젝터의 수력학적 특성 및 혼합, 미립화 등의 분무특성에 대한 연구가 필수적이다. 본 연구에서는 대학실험실 급에서 운용할 수 있는 범위의 가압식 초저온 추진제 공급장치 및 LabVIEW를 이용한 Cyclogram 제어 및 데이터 수집장치 등을 구축하였다. 제작된 시험장치를 이용하여 스월-동축인젝터의 $LN_2-GN_2$ 초저온 수류시험 및 분무 가시화를 수행하였다. 또한 LOX-$GCH_4$ 추진제 조합의 연소시험을 위한 연소기와 추력대를 설계 및 제작하였다.

  • PDF

중속 디젤엔진의 실린더 헤드포트 유동 특성 실험 연구 (An Experimental Study of the Flow Characteristics of Cylinder Head Port for Medium-Speed Diesel Engines)

  • 김진원;갈상학
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집D
    • /
    • pp.790-795
    • /
    • 2001
  • Since the characteristics of combustion and pollutant in Diesel engines were mainly affected by the characteristics of in-cylinder gas flow and fuel spray, an understanding of those was essential to the design of the D.I. Diesel engines. The improvement of volumetric efficiency of air charging into combustion chamber is a primary requirement to obtain better mean effective pressure of an engine. Since the air resistances in intake and exhaust flow passages, valve lift and valve shape influence greatly to the volumetric efficiency, it is very important to investigate the flow characteristics of intake and exhaust port which develops air motion in the combustion chamber. This paper presents the results of an experimental investigation of steady flow through the various kinds of commercial cylinder head ports, and the development procedures of HHI's H21/32 prototype cylinder head ports.

  • PDF

편심된 보울의 연소실을 갖는 디젤 엔진의 연소 특성 해석 (Combustion Characteristics in the Offset Bowl Combustion Chamber Diesel Engine)

  • 김홍석;성낙원
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.54-65
    • /
    • 1999
  • In this study, the flow field, spray structure, and combustion process were investigated in a direct injection diesel engine having an offset bowl in a combustion chamber. The KIVA-3V code was used in this study. In order to obtain accurate results, a droplet atomization model, wall impingement model, and ignition delay concept were added to KIVA-3V code. The results showed that the offset bowl engine had a large vortex flow. The direction of this flow counteracted to the direction of fuel injection in one side of combustion chamber. It decreased local turbulent kinetic energy and eventually nonuniform combustion was resulted in an offset bowl engine. In comparison with a center bowl engine case, the peak cylinder pressure was decreased about 6%. Finally , the effect of swirl on combustion was investigated in an offset bowl engine . As the became stronger, the nouniform characteristics in combustion were increased.

  • PDF

Multizone 모델을 이용한 직접분사식 디젤엔진 성능 예측에 관한 연구 (A Prediction of DI Diesel engine Performance using the Multizone Model)

  • 황재원;;박재근;장기현;채재우
    • 한국자동차공학회논문집
    • /
    • 제8권1호
    • /
    • pp.40-47
    • /
    • 2000
  • A model for the prediction of combustion and exhaust emissions of DI diesel engine has been formulated and developed. This model is a quasi-dimensional phenomenological one and is based on multi-zone combustion modelling concept. This model is developed based on the concept of Hiroyasu's multizone combustion models. It takes nozzle injection (spray) parameters, induction swirl into consideration and the models of zone velocity, air entrainment, fuel droplet evaporation and mixture combustion are upgraded. Various parameters, such as cylinder pressure, heat release rate, Nox and soot emission, and these parameters in the zone are simulated. The results are compared with the experimental ones, too.

  • PDF

VISUALIZATION AND MEASUREMENT OF A NARROW-CONE DI GASOLINE SPRAY FOR THE IMPINGEMENT ANALYSIS

  • Park, J.S.;Im, K.S.;Kim, H.S.;Lai, M.C.
    • International Journal of Automotive Technology
    • /
    • 제5권4호
    • /
    • pp.221-238
    • /
    • 2004
  • Wall interactions of direct injection spray were investigated using laser-sheet imaging, shadowgraphy, wetted footprint and phase Doppler interferometry techniques. A narrow-cone high-pressure swirl injector is used to inject iso-octane fuel onto a plate, which has three different impact angles inside a pressurized chamber. Heated air and plate conditions were compared with unheated cases. Injection interval was also varied in the heated case to compare dry- and wet- wall impingement behaviors. High-speed macroscopic Mie-scattering images showed that presence of wall and air temperature has only minor effect on the bulk spray structure and penetration speed for the narrow-cone injector tested. The overall bulk motions of the spray plume and its spatial position at a given time are basically unaffected until a few millimeters before impacting the wall. The surface properties of the impact surface, such as the temperature, the presence of a preexisting liquid film also have a small effect on the amount of wetting or the wetted footprint; however, they have strong influence on what occurs just after impact or after a film is formed. The shadowgraph in particular shows that the plate temperature has a significant effect on vapor phase propagation. Generally, 10-20% faster horizontal vapor phase propagation is observed along the wall at elevated temperature condition. For impingement onto a preexisting film, more splash and evaporation were also observed. Contrary to some preconceptions, there is no significant splashing and droplet rebounding from surfaces that are interposed in the path of the DI gasoline spray, especially for the oblique impact angle cases. There also appears to be a dense spray front consists of large sac spray droplets in the oblique impact angle cases. The bulk of the spray is not impacted on the surface, but rather is deflected by it The microscopic details as depicted by phase Doppler measurements show that the outcome of the droplet impaction events can be significantly influenced. Only droplets at the spray front have high enough Weber numbers for wall impact to wet, splash or rebound. Using the sign of vertical velocity, the time-resolved downward droplets and upward droplets are compared. The Weber number of upward moving droplets, which seldom exceeds unity, also decreases as the impact angle decreases, as the droplets tend to impact less and move along the wall in the deflected spray plume.

초음속 엔진용 연소기를 위한 스크류형 선회기를 장착한 압력선회형 인젝터의 성능(Part I. 기준 인젝터의 성능) (Performance of Pressure Swirl Injector using Screw Type Swirler for Combustor in a Supersonic Engine (Part I. Performance of Control Group Injector))

  • 황용석;이장우;이상연;정해승;윤현걸
    • 한국항공우주학회지
    • /
    • 제36권3호
    • /
    • pp.258-263
    • /
    • 2008
  • 초음속 순항 엔진 연소기에 적용하기에 유리한 스크류형 선회기를 장착한 인젝터의 성능을 이론적, 수치적, 실험적 방법을 통해 밝혀 내었다. 인젝터의 성능은 유출계수와 분무각을 중심으로 살펴보았으며, 이에 영향을 미치는 형상 파라미터를 정의하고 기준 인젝터를 설계하여 형상계수에 따른 성능의 변화를 살펴보았다. 정의된 범위에서 인젝터의 성능은 이론적 예측에 의한 값보다 작은 값으로 나타났으며, VOF 방법을 사용한 수치해석에 의해 성능이 매우 잘 예측되는 것을 확인할 수 있었다. 점성장벽에 해당하는 특성은 나타나지 않았으며, 최소 0.05의 유출계수와 최대 104의 분무각을 얻을 수 있었다.

Characteristics of the Atomization in Counter-Swirl Internal Mixing Atomizer

  • Lee, Sam-Goo;Kim, Kyu-Chul;Park, Byung-Joon
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1999년도 제13회 학술강연논문집
    • /
    • pp.27-27
    • /
    • 1999
  • To illustrate the global variation of the droplet mean diameters and the turbulent flow characteristics in counterflowing internal mixing pneumatic nozzle, the experimental measurements at five axial downstream locations(i.e., at Z=30, 50, 80, 120, and 170mm) were made using a PDPA(Phase Doppler Particle Analyzer) under the different air injection pressures ranging from 40 ㎪ to 120 ㎪. A nozzle with axi-symmetric tangential-drilled four holes at an angle of 15$^{\circ}$ has been designed and manufactured. The distributions of velocities, turbulence intensities, turbulence kinetic energy, turbulent correlation coefficients, spray angle, droplet mean diameters, volume flux, number density are quantitatively analyzed. It is possible to discern the effects of increasing air pressure. It indicates that the strong axial momentum in spite of more or less disparity between the velocity components means more reluctant to disperse radially, and that axial fluctuating velocities are substantially higher than those of radial and tangential ones, suggesting that the disintegration process is enhanced under higher air assist. The larger droplets are detected in the spray centerline at the near stations and smaller ones are generated due to further subsequent breakup at farther axial locations are attributed to the internal mixing type nozzle characteristics. Despite of the strong axial momentum, the poor atomization around the centre close to the nozzle exit is attributed to the lower rates of spherical particles which are not subject to instantaneous breakup. As it goes downstream, however, substantial increases in SMD(Sauter Mean Diameter) from the central part toward spray periphery are understandable because the droplet relative velocity is too low to bring about any subsequent disintegration.

  • PDF

Development and Verification Test of a Bi-propellant Thruster Using Hydrogen Peroxide and Kerosene

  • Yu, I Sang;Kim, Tae Woan;Ko, Young Sung;Jeon, Jun Su;Kim, Sun Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권2호
    • /
    • pp.270-278
    • /
    • 2017
  • This paper describes development procedure and verification test results of a bi-propellant thruster using hydrogen peroxide and kerosene. The design thrust of the thruster is about 500 N and six swirl type coaxial injectors were used. The passage type manifolds were employed for the injector head to reduce the response time. The passage was designed to minimize stagnation points and recirculation region to ensure uniform flow distribution and sufficient cooling performance through flow analysis using Fluent. A catalytic igniter using hydrogen peroxide was installed at the center of the injector head. The propellant feeding and spray characteristics were confirmed by hydraulic tests. Combustion tests were performed on design and off-design points to analyze combustion characteristics under various mixture ratio conditions. The combustion test results show that combustion efficiency was over 95 % and chamber pressure fluctuation were less than 1.5 % under all test conditions.