• Title/Summary/Keyword: Pressure-swirl injector

Search Result 151, Processing Time 0.022 seconds

A numerical study on the characteristics of internal flows in a gasoline direct swirl injector (직접분사식 가솔린 선회 분사기에서의 내부 유동특성에 관한 수치 해석)

  • Bae, S.H.;Moon, S.Y.;Lee, C.W.
    • Journal of ILASS-Korea
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2001
  • The internal flow characteristics of a gasoline direct injector have been studied to improve fuel economy and reduce exhaust emissions. Computational Fluid Dynamics (CFD) is used to examine the internal flow of the GDI with the purpose of designing the optimum geometry of the injector. This study tests orifice length, cone angle, swirl angle, orifice diameter and needle lift. The results show that optimum sizes of the orifice length, cone angle, swirl angle, orifice diameter and needle lift are 0.8mm, $140^{\circ},\;120^{\circ},\;80mm\;and\;70{\mu}m$, respectively. The size of the lift does not affect the formation of the air core signficantly near the tip of the needle compared to the ball-type needle. The vena contracta phenomenon near the orifice inlet can be released by smoothing the edge.

  • PDF

A Study on the Interaction Effect Between Spray Fan Formed by Gas/Liquid Swirl Injector (기체/액체를 사용하는 Swirl 인젝터의 간섭효과에 관한 연구)

  • Joung, Rae-Hyuck;Kim, Yoo;Cha, Young-Ran;Park, Joung-Bae;Park, Uoo-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Experimental study was carried out to investigate the interaction effect between spray fan formed by gas/liquid swirl injector. Test variables were supply pressure and injector distance. Water and air were the simulant for the experiment. For water supply only; Collected water mass was concentrated at the lower part of the two spray fan, but this effect was reduced with increasing supply pressure. Both air and water supply1; Collected water mass was again concentrated at the lower part of the impingement point, but this effect was reduced when air/water supply pressure ratio was increased.

  • PDF

The Phenomena of Injection Instability for Simplex Swirl Injector (Simplex Swirl Injector의 Injection Instability에 관한 연구)

  • Park, Byung-Sung;Kim, Ho-Young;Chun, Chul-Kyeun
    • 한국연소학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.287-293
    • /
    • 2005
  • Most of all combustion system has combustion instability. It is a serious problem in combustion system. Unstable injection is one of the source of combustion instability. The experimental investigation of spray characteristics for simplex swirl injector were conducted experimentally. Two kerosene based fuels were chosen as the atomizing fluid. As the major operating parameters, fuel temperature and injection pressure were chosen, and varied in the range from 253 K to 293 K and from 0.2 MPa to 1.0 MPa, respectively. Direct spray images and mean diameter were measured for the various combination of operating parameters in the flow field. The results of present study show that the injection pressure and spray cone angle are fluctuated at specific conditions while it is continuous steady injection. As the fuel temperature changes continuously, spray cone angle varies discontinuously through the region of injection instability.

  • PDF

Study on Phase-Amplitude Characteristics in a Simplex Swirl Injector with Low Frequency Range (저주파 압력섭동 범위 내에서의 단일 스월 인젝터의 진폭-위상 특성 연구)

  • Khil, Tae-Ock;Chung, Yun-Jae;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.2
    • /
    • pp.19-28
    • /
    • 2010
  • Generally, combustion instability is generated by the mutual coupling between the heat release and the acoustic pressure in the combustor. On the occasion, the acoustic pressure generates the oscillation of the mass flow rate of propellant injected from injector, and this oscillation again affects combustion in the combustor. So, the dynamic characteristics of the injector have been studied to control combustion instability using injector itself in Russia from 1970's. In order to study injector dynamics, a mechanical pulsator for forced pressure pulsation is produced and the method to quantify the mass flow rate of the propellant that is oscillating at the exit of the injector is developed. With the pulsator and the method, pulsating values of the mass flow rate, pressure, liquid film thickness, and axial velocity generated at the exit of the simplex swirl injector are measured in real time. And phase-amplitude characteristics of each parameter are analyzed using these pulsating values acquired at the exit of the simplex swirl injector.

Breakup Characteristics of Impinging and Swirl Type Injectors

  • Yoon, Y.B.
    • Journal of ILASS-Korea
    • /
    • v.10 no.4
    • /
    • pp.32-46
    • /
    • 2005
  • The breakup characteristics of liquid sheets formed by the impinging and swirl type injectors were studied as increasing the Weber number (or injection condition) and the ambient gas pressure to 4.0.MPa. In the case of impinging type injector. we compared the changes of breakup lengths between laminar and turbulent sheets. which are formed by the impingement of laminar and turbulent jets. respectively. The results showed that both sheets expand as increasing the injection velocity irrespective of the ambient gas density when the gas based Weber number is low. When the Weber number is high, however, the breakup of turbulent sheet depends on the hydraulic force of jets as well as the aerodynamic force of ambient gas which determines the breakup of laminar sheet. Using the experimental results. we could suggest empirical models on the breakup lengths of laminar and turbulent sheets. In the case of swirl type injector. as $We_l$, and ambient gas density increased, the disturbances on the annular liquid sheet surface were amplified by the increase of the aerodynamic forces. and thus the liquid sheet disintegrated near from the injector exit. Finally, the measured breakup length of swirl type injector according to the ambient gas density and $We_l$, was compared with the result by the linear instability theory. We found that the corrected breakup length relation derived from linear instability theory considering the attenuation of sheet thickness agrees well with our experimental results.

  • PDF

An Effect of Fuel Property on the Spray characteristics of Swirl Injector for Use HCCI engine (연료 물성치 변화가 HCCI용 스월 인젝터의 분무특성에 미치는 영향)

  • Jeong, Hae-Young;Lee, Ki-Hyung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.478-483
    • /
    • 2003
  • This paper describes spray characteristics of a swirl injector which is intended for use in a HCCI engine. Many optical diagnostics such as laser diffraction methods, and high speed camera photography are applied to measure the spray drop diameter and to investigate the spray development process. The effect of fuel properties on the spray characteristics was investigated using three different fuels because HCCI combustion is tolerant of the chemical composition of various fuels. From these results, the HCCI injector formed a hollow cone sheet spray rather than a liquid jet and the atomization efficiency is high for the low-pressure injector. The SMD of test injector was ranged from $15{\mu}m$ ${\mu}m$ We also found that the spray breakup characteristics were dependent on the fuel properties such as density, viscosity, and surface tension.

  • PDF

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.125-130
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principle design parameters, a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.

  • PDF

Spray characteristics of swirl injector using liquid film thickness measurement (액막두께 측정방법을 이용한 스월 인젝터의 분무특성 연구)

  • Kim Sung-Hyuk;Kim Dong-Jun;Kim Byung-Sun;Yoon Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.251-255
    • /
    • 2005
  • By using liquid film thickness measurement the spray characteristics of swirl injector according to the geometric parameters were investigated in this paper. A specially designed injector having a variable backhole length, swirl chamber length, orifice length was used to measure the liquid film thickness. The spray characteristics of the injector were represented by mass flow rate according to the injection pressure, liquid film thickness in the lower orifice, spray cone angle.

  • PDF

A Study on the Thrust Throttling Using Gas Injection in Swirl Injectors (기체주입을 이용한 와류형 분사기들에서의 가변추력 연구)

  • Lee, Wongu;Yoon, Youngbin;Ahn, Kyubok
    • Journal of ILASS-Korea
    • /
    • v.23 no.4
    • /
    • pp.159-168
    • /
    • 2018
  • Thrust throttling in a liquid rocket engine can be implemented via several ways such as high pressure drop injector, dual manifold, multiple chamber, pintle injector, and gas injection. Thrust throttling using gas injection controls thrust by usually injecting inert gas into propellant through an aerator to reduce the propellant's bulk density. In this study, the outside-in aerator was used in the propellant line to create two phase flow. Closed-type, open-type, and screw-type bi-swirl coaxial injectors were utilized for investigating throttling characteristics such as pressure drop, mixture density, and discharge coefficient according to gas-liquid mass ratio.

Dynamic Characteristics Simulation for a Simplex Swirl Injector (스월 인젝터의 동특성에 대한 수치해석 연구)

  • 박홍복
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.67-75
    • /
    • 2006
  • A fully nonlinear model accounting for swirling effect has been applied in analyzing the dynamic response for a classical swirl injector. The current work applied highly accurate Boundary Element Methods (BEMs) in assessing its static and dynamic characteristics. On the basis of moving surface treatment method and surface instability study, which are obtained from the previous static characteristics analysis in pressure-swirl injectors, this work was expanded for analyzing the dynamics of a classical swirl injector. The dynamic response through injector components for disturbed inflow condition was investigated. The modified code was validated from comparison with the theoretical result for a typical swirl injector. Clearly the simulated result shows the interesting characteristics of swirl injectors to provide either amplification or damping of the input disturbance through each component. These results give promise in applying the current model to nonlinear dynamic characteristics of swirl injectors.