• Title/Summary/Keyword: Pressure-strain Rate correlation

Search Result 18, Processing Time 0.026 seconds

Study on the Split Hopkinson Pressure Bar Apparatus for Measuring High-strain Rate Tensile Properties of Plastic Material (플라스틱 소재의 고 변형률 인장특성 평가를 위한 홉킨스바(Split Hopkinson Pressure Bar) 측정 장비에 관한 연구)

  • Han, In-Soo;Lee, Se-Min;Kim, Kyu-Won;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.196-200
    • /
    • 2022
  • Split Hopkinson Pressure Bar (SHPB) is a general test equipment for measuring the mechanical properties of high modulus metal and composite materials at high strain rate. However, for the soft plastic material, it is difficult to hold the specimen and achieve dynamic stress equilibrium due to the weak transmitted signals. In this study, SHPB test apparatus were designed to measure accurately the high strain rate stress-strain curve of the soft plastic materials by changing the incident bar materials and the shape of the specimen holder parts. In addition, to verify the high strain-rate tensile strain data obtained from SHPB, the strain distribution of the specimen was measured and analyzed with a high-speed camera and the digital image correlation (DIC), which was compared with the strain history measured from SHPB.

Design and Fabrication of Split Hopkinson Pressure Bar for Dynamic Mechanical Properties of Self-reinforced Polypropylene Composite (폴리프로필렌 자기 보강 복합재의 동적 물성 구축을 위한 Split Hopkinson Pressure Bar의 설계 및 제작)

  • Kang, So-Young;Kim, Do-Hyoung;Kim, Dong-Hyun;Kim, Hak-Sung
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.221-226
    • /
    • 2018
  • The Split Hopkinson Pressure Bar(SHPB) has been the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between $100s^{-1}$ and $10,000s^{-1}$. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In this study, the SHPB was directly designed and fabricated for the dynamic mechanical properties of fiber reinforced plastic (FRP) composites. In addition, this apparatus was verified for the validity by comparing the strain data obtained through the high speed camera and Digital Image Correlation(DIC) during the high strain rate compression test of the self-reinforced polypropylene composite (SRPP) specimen.

Study of the Compressive Behavior of Polypropylene-low Glass Fiber Compound and Thermoplastic Olefin under High Strain Rate (고 변형률 속도에서 폴리프로필렌 및 열가소성 올레핀 소재의 압축 거동에 대한 연구)

  • Lee, Se-Min;Kim, Dug-Joong;Han, In-Soo;Kim, Hak-Sung
    • Composites Research
    • /
    • v.35 no.1
    • /
    • pp.38-41
    • /
    • 2022
  • In this study, the strain rate dependent tensile and compressive properties of PP-LGF and TPO was investigated under the high strain rate by using the Split Hopkinson Pressure Bar (SHPB). The SHPB is the most widely used apparatus to characterize dynamic mechanical behavior of materials at high strain rates between 100 s-1 and 10,000 s-1. The SHPB test is based on the wave propagation theory which was developed to give the stress, strain and strain rate in the specimen using the strains measured in the incident and transmission bars. In addition, to verify the strain data obtained from SHPB, the specimen was photographed with a high-speed camera and compared with the strain data obtained through the Digital Image Correlation (DIC).

Dynamic failure features and brittleness evaluation of coal under different confining pressure

  • Liu, Xiaohui;Zheng, Yu;Hao, Qijun;Zhao, Rui;Xue, Yang;Zhang, Zhaopeng
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.401-411
    • /
    • 2022
  • To obtain the dynamic mechanical properties, fracture modes, energy and brittleness characteristics of Furong Baijiao coal rock, the dynamic impact compression tests under 0, 4, 8 and 12 MPa confining pressure were carried out using the split Hopkinson pressure bar. The results show that failure mode of coal rock in uniaxial state is axial splitting failure, while it is mainly compression-shear failure with tensile failure in triaxial state. With strain rate and confining pressure increasing, compressive strength and peak strain increase, average fragmentation increases and fractal dimension decreases. Based on energy dissipation theory, the dissipated energy density of coal rock increases gradually with growing confining pressure, but it has little correlation with strain rate. Considering progressive destruction process of coal rock, damage variable was defined as the ratio of dissipated energy density to total absorbed energy density. The maximum damage rate was obtained by deriving damage variable to reflect its maximum failure severity, then a brittleness index BD was established based on the maximum damage rate. BD value declined gradually as confining pressure and strain rate increase, indicating the decrease of brittleness and destruction degree. When confining pressure rises to 12 MPa, brittleness index and average fragmentation gradually stabilize, which shows confining pressure growing cannot cause continuous damage. Finally, integrating dynamic deformation and destruction process of coal rock and according to its final failure characteristics under different confining pressures, BD value is used to classify the brittleness into four grades.

The Equilibrium Solution and the Stability Analysis of Reynolds Stress Equations for a Homogeneous Turbulent Shear Flow (난류 균일전단유동에 대한 레이놀즈 응력 모형방정식의 평형해와 안정성 해석)

  • 이원근;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.3
    • /
    • pp.820-833
    • /
    • 1995
  • An analysis is performed to examine the equilibrium state and the stability of modeled Reynolds stress equations for homogeneous turbulent shear flows. The system of the governing equations consists of four coupled ordinary differential equations. The equilibrium states are found by the steady state solution of the governing equations. In order to investigate the stability of the system about its state in equilibrium, and eigenvalue problem is constructed. As a result, constraints for the coeffieients in the model equations are obtained by the stability condition of the equilibrium state as well as by their physically realizable bounds. It is observed that the models with pressure-strain rate correlation that are linear in the anisotropy tensor are stable and produce reasonable equilibrium tensor do not behave properly. Stability considerations about three most commonly used models are given in detail in the final section.

Influence of dynamic strain aging on material strength behavior of virgin and service-exposed Gr.91 Steel (신재 및 가동이력 Gr.91강의 재료강도 거동에 미치는 동적변형시효의 영향)

  • Ki-Ean Nam;Hyeong-Yeon Lee;Jae-Hyuk Eoh;Hyungmo Kim;Hyun-Uk Hong
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.20 no.1
    • /
    • pp.66-74
    • /
    • 2024
  • This study investigates the effects of temperatures and strain rates on the strength and ductility of Gr.91 (ASME Grade 91) steel which is widely being used as a heat-resistant material in Generation IV nuclear and super critical thermal power plants. The tensile behavior of modified 9Cr-1Mo (Gr.91) steel was studied for the three strain rates of 6.67×10-5/s, 6.67×10-4/s and 6.67×10-3/s over the temperature range from room temperature (RT) to 650℃. Experimental results showed that at specific combinations of temperatures (300~400℃) and strain rates, serrations appeared in the stress-strain curves. Concurrently, abnormal behaviors such as a plateau in yield strength and tensile strength, a minimum in ductility and negative strain rate sensitivity were observed. These phenomena were analyzed as significant characteristics of dynamic strain aging (DSA). Since this abnormal behavior in Gr.91 steel affects the material strength, it is judged that a correlation analysis between DSA and material strength should be crucial in the design and integrity evaluation of Gr. 91 steel pressure vessel and piping subjected to high-temperature loading.

Study on Correlation Between the Internal Pressure Distribution of Slit Nozzle and Thickness Uniformity of Slit-coated Thin Films (슬릿 노즐 내부 압력 분포와 코팅 박막 두께 균일도 간의 상관관계 연구)

  • Gieun Kim;Jeongpil Na;Mose Jung;Jongwoon Park
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2023
  • With an attempt to investigate the correlation between the internal pressure distribution of slit nozzle and the thickness uniformity of slot-coated thin films, we have performed computational fluid dynamics (CFD) simulations of slit nozzles and slot coating of high-viscosity (4,800 cPs) polydimethylsiloxane (PDMS) using a gantry slot-die coater. We have calculated the coefficient of variation (CV) to quantify the pressure and velocity distributions inside the slit nozzle and the thickness non-uniformity of slot-coated PDMS films. The pressure distribution inside the cavity and the velocity distribution at the outlet are analyzed by varying the shim thickness and flow rate. We have shown that the cavity pressure uniformity and film thickness uniformity are enhanced by reducing the shim thickness. It is addressed that the CV value of the cavity pressure that can ensure the thickness non-uniformity of less than 5% is equal to and less than 1%, which is achievable with the shim thickness of 150 ㎛. It is also found that as the flow rate increases, the average cavity pressure is increased with the CV value of the pressure unchanged and the maximum coating speed is increased. As the shim thickness is reduced, however, the maximum coating speed and flow rate decrease. The highly uniform PDMS films shows the tensile strain as high as 180%, which can be used as a stretchable substrate.

  • PDF

A Study of New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment(I) (내열강 용접부의 크리프 평가 신기술 개발에 관한 연구)

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.30-30
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen(l0×10×0.5mm). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at 600℃. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

A Study on New Technique Development for Creep Evaluation of Heat Resistant Steel Weldment (I) (내열강 용접부의 크리프 평가 신기술 개발에 관한 연구(I))

  • 유효선;백승세;권일현;이송인
    • Journal of Welding and Joining
    • /
    • v.20 no.6
    • /
    • pp.754-761
    • /
    • 2002
  • It has been reported that the creep characteristics on weldment which is composed of weld metal(W.M), fusion line(F.L), heat-affected zone(HAZ), and base meta(B.M) could be unpredictably changed in severe service conditions such as high temperature and high pressure. However, the studies done on creep damage in power plant components have been mostly conducted on B.M and not the creep properties of the localized microstructures in weldment have been thoroughly investigated yet. In this paper, it is investigated the creep characteristics for three microstructures like coarse-grain HAZ(CGHAZ), W.M, and B.M in X20CrMoV121 steel weldment by the small punch-creep-(SP-Creep) test using miniaturized specimen($10{\times}10{\times}0.5mm$). The W.M microstructure possesses the higher creep resistance and shows lower creep strain rate than the B.M and CGHAZ. In the lower creep load the highest creep strain rate is exhibited in CGHAZ, whereas in the higher creep load the B.M represents the high creep strain rate. The power law correlation for all microstructures exists between creep rate and creep load at $600^{\circ}C$. The values of creep load index (n) based on creep strain rate for B.M, CGHAZ, and W.M are 7.54, 4.23, and 5.06, respectively and CGHAZ which shows coarse grains owing to high welding heat has the lowest creep loade index. In all creep loads, the creep life for W.M shows the highest value.

Experimental investigation on bolted rock mass under static-dynamic coupled loading

  • Qiu, Pengqi;Wang, Jun;Ning, Jianguo;Shi, Xinshuai;Hu, Shanchao
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.99-111
    • /
    • 2022
  • Instability of bolted rock mass has been a major hazard in the underground coal mining industry for decades. Developing effective support guidelines requires understanding of complex bolted rock mass failure mechanisms. In this study, the dynamic failure behavior, mechanical behavior, and energy evolution of a laboratory-scale bolted specimens is studied by conducting laboratory static-dynamic coupled loading tests. The results showed that: (1) Under static-dynamic coupled loading, the stress-strain curve of the bolted rock mass has a significant impact velocity (strain rate) correlation, and the stress-strain curve shows rebound characteristics after the peak; (2) There is a critical strain rate in a rock mass under static-dynamic coupled loading, and it decreases exponentially with increasing pre-static load level. Bolting can significantly improve the critical strain rate of a rock mass; (3) Compared with a no-bolt rock mass, the dissipation energy ratio of the bolted rock mass decreases exponentially with increasing pre-static load level, the ultimate dynamic impact energy and dissipation energy of the bolted rock mass increase significantly, and the increasing index of the ratio of dissipation energy increases linearly with the pre-static load; (4) Based on laboratory testing and on-site microseismic and stress monitoring, a design method is proposed for a roadway bolt support against dynamic load disturbance, which provides guidance for the design of deep underground roadway anchorage supports. The research results provide new ideas for explaining the failure behavior of anchorage supports and adopting reasonable design and construction practices.