• Title/Summary/Keyword: Pressure-loss penalty

Search Result 4, Processing Time 0.018 seconds

Application with Winglet-Type Vortex Generators in an In-line Tube Arrangement (정렬형 관 배열에서의 와류발생기 응용)

  • Kwak, Kyung-Min
    • Journal of Energy Engineering
    • /
    • v.14 no.4 s.44
    • /
    • pp.241-247
    • /
    • 2005
  • Heat transfer enhancement and pressure loss penalty caused by three-row winglets built in three-row tube-bundles in an in-line arrangement, are compared between 'common flow up' and 'common flow down' winglet configurations. The 'common flow down' winglet-pairs recommended by the previous researchers bring about $10\%$ to $25\%$ increase in heat transfer enhancement and $20\%$ to $35\%$ increase in pressure loss penalty, in comparison with fin-tube bundles without winglets. For the 'common flow up' winglet-pairs, the spanwise distance between the trailing edges (${\Delta}y$) of winglet pairs was changed and investigated. Two types ot winglet are applied for triangular and rectangular shapes. In the triangular winglets with ${\Delta}y$=5 mm in in-line tube bundles, the heat transfer increased up to $10\%$, and simultaneously the pressure loss decreased by $8\%$ to $15\%$ for the Reynolds number (based on two times channel height) ranging from 300 to 2700, when the 'common flow up' winglets were built in. The performance of fin-tube bundles with triangular winglets is much superior to the rectangular one, because of the smaller pressure-loss penalty.

A study on the friction head loss in flat aluminum micro multi tubes with nonazeotropic refrigerant mixtures R-410A (비공비 혼합냉매 R-410A를 적용한 납작한 알루미늄 마이크로 멀티 튜브에서의 마찰손실에 관한 연구)

  • Lee, Jeong-Kun;Min, Kyung-Ho
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.37-43
    • /
    • 2019
  • This study conducted a research as to condensation heat transfer friction loss headby using three types of flat micro multi-channel tubes with different processing of micro-fin and number of channels inside the pipes and different sizes of appearances. In addition, identical studies were conducted by using smoothing circular tubes with 5mm external diameter to study heat enhancement factor and pressure drop penalty factor. 1) The friction head loss showed an increase as the vapor quality and mass flux increased. In case of saturation temperature, it shows an increase as it gets lower. These factors are the reason occurring as the lower the saturation temperature is, the higher the density of refrigerant vapor gets. The influence of heat flux is similar as the dryness is low, but as it gets higher, it lowers in heat flux, and as the high temperature of high heat flux, it is a factor that occurs as the density gets lower. 2) RMS error of the in case of friction head loss, it showed to be predicted as 0.45~0.67 by Chisholm, Friedel, Lockhart and Martinelli. 3) As forfriction head loss penalty factor, the smaller the aspect ratio is, the larger the penalty factor gets, and as for the effect of micro-fin, the penalty factor increased because it decreases to the gas fluid the way groove for the refrigerant's flow.

An Experimental Study on Active Regeneration Timing for the Minimization of Fuel Penalty in Active Regeneration DPF System Using Diesel Injection (경유분사를 이용한 강제재생방식 DPF 시스템 연비 손실 최소화를 위한 재생시점 고찰)

  • Rah, Seung-Woo;Choung, Youn-Kyoo;Oh, Kwang-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.91-96
    • /
    • 2009
  • The number of vehicles applied diesel engine are rapidly rising for fuel economy. Accompanying this trend, application of an after-treatment system is strictly required as a result of reinforced emission regulation. The Diesel Particulate Filter (DPF) system is considered as the most efficient method to reduce particulate matter by car makers but also in retrofit market. In this paper we discussed the optimization of active regeneration timing by comparing the fuel consumption from back pressure caused by PM loading and from active regeneration. The effects of back pressure of DPFs during PM loading, active regeneration condition and engine emission(PM) on additional fuel consumption are experimentally investigated and the proper regeneration timings according to DPF systems and fuel loss for 160,000km are determined.

Characteristics of Pressure Drops in Square Channels with Twisted Tape Inserts plus Axial Interrupted Ribs (테이프와 거칠기가 설치된 사각 채널의 압력강하 특성)

  • Ahn, S.W.;Bae, S.T.;Kang, H.K.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.38-42
    • /
    • 2006
  • Pressure drops and friction factors in square channels with twisted tape inserts plus axial interrupted ribs are investigated. Tests are performed for Reynolds numbers ranging from 8,900 to 29,000. The rib height-to-channel hydraulic diameter, $e/D_h$, is kept at 0.057 and test section length-to-hydraulic diameter, $L/D_h$ is 30. The pressure drops and friction factor values are enhanced with axial interrupted ribs and twisted tape inserts. Square channels with twisted tape inserts plus axial interrupted ribs show the greatest pressure loss penalty in the present work. Friction factor data obtained for the square channel with twisted tape inserts plus axial interrupted ribs are less than those in the past publications for circular tubes with axial interrupted ribs and twisted tape inserts.

  • PDF