• 제목/요약/키워드: Pressure-based Algorithm

검색결과 410건 처리시간 0.024초

진동법에서 가변 특성 비를 이용한 혈압 추정 알고리즘의 개발 (Development of Blood Pressure Estimation Algorithm Using Variable Characteristic Ratios on Oscillometric Method)

  • 신준
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권6호
    • /
    • pp.510-515
    • /
    • 2009
  • In this paper, variable characteristic ratio algorithm based on oscillometric method is proposed to enhance the accuracy of blood pressure measurement. We combined the slope-based approach and fuzzy inference technique to change the characteristic ratios of height-based method. The proposed algorithm was assessed on 255 measurements from 85 subjects and compared with the conventional height-based algorithm. The testing results showed that the developed algorithm achieved an overall grade A for both systolic and diastolic blood pressures according to the BHS protocol. And, mean standard deviation between the observers and the developed algorithm were 5.71mmHg and 6.29mmHg for systolic and diastolic pressures respectively, which also fulfilled the AAMI criteria. In conclusion, this algorithm was successfully developed and recommended for further clinical trials with the wider adult population.

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

비압축성 유동해석 알고리듬 확장을 통한 압축성 유동장 해석 (Extension of Incompressible Flow Solver Algorithm to Analyze Compressible Flowfield)

  • 임영택;김문상
    • 항공우주시스템공학회지
    • /
    • 제2권2호
    • /
    • pp.20-27
    • /
    • 2008
  • The characteristics of compressible flow are different from those of incompressible flow from the mathematical and physical point of view. Therefore, the way to solve the flowfield is different between compressible flow and incompressible flow. In general, density-based numerical algorithm is mainly used for compressible flow solver development. On the other hand, incompressible flow solver prefers to use pressure-based numerical algorithm. In this research, a compressible Navier-Stokes flow solver is developed by means of extending from pressure-based incompressible numerical algorithm to handle both compressible and incompressible flows using the same flow solver. The present flow solver is tested at various speed ranges and compared with the solutions of density-based compressible flow solver. Numerical results show a good agreement between two flow solvers.

  • PDF

GA를 이용한 전기유압식 가변펌프의 압력제어 (Pressure Control of Electro-Hydraulic Variable Displacement Pump Using Genetic Algorithms)

  • 안경관;현장환;조용래;오범승
    • 한국정밀공학회지
    • /
    • 제21권9호
    • /
    • pp.48-55
    • /
    • 2004
  • This study presents a genetic algorithm-based method fur optimizing control parameters in the pressure control of electro-hydraulic pump with variable displacement. Genetic algorithms are general-purpose optimization methods based on natural evolution and genetics and search the optimal control parameters maximizing a measure that evaluates the performance of a system. Four control gains of the PI-PD cascade controller for an electro-hydraulic pressure control system are optimized using a genetic algorithm in the experiment. Optimized gains are confirmed by inspecting the fitness distribution which represents system performance in gain spaces. It is shown that genetic algorithm is an efficient scheme in optimizing control parameters of the pressure control of electro-hydraulic pump with variable displacement.

CVT 변속속도 개선에 의한 엔진최적운전 (Optimal Engine Operation by Shift Speed Improvement for a CVT)

  • 이희라;김현수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.546-551
    • /
    • 2001
  • In this paper, an algorithm to improve the optimal engine operation is suggested by increasing the CVT shift speed. By rearranging the CVT shift dynamic equation, it is found that the CVT shift speed depends on the line pressure as well as the primary pressure. Based on the shift dynamics, an algorithm to accomplish a faster shift speed is presented by increasing the line pressure. In order to apply the algorithm, dynamic models of the line pressure control valve and the ratio control valve are obtained by considering the CVT shift dynamics and model based controllers are designed. It is found from the simulation results that fuel economy can be improved by 2% in spite of the increased hydraulic loss due to the increased line pressure.

  • PDF

Fuzzy SOC를 이용한 하이드로 포밍 고정의 압력제어기 설계 (A fuzzy SOC based pressure tracking controller design for hydroforming process)

  • 김문종;박희재;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1990년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 26-27 Oct. 1990
    • /
    • pp.350-355
    • /
    • 1990
  • A pressure tracking of hydroforming process is considered in this paper. To account for nonlinearities and uncertainty of the process. A fuzzy SOC based iterative learning control algorithm is proposed. A series of experimentals were performed for the pressure tracking control of the process. The experimental results show that regardless of inherent nonlinearties and uncertainties associated with hydraulic system. A good pressure tracking control performance is obtained using the proposed fuzzy learning control algorithm.

  • PDF

Development of an Automatic Blood Pressure Device based on Korotkoff Sounds

  • Li, Xiong;Im, Jae Joong
    • International journal of advanced smart convergence
    • /
    • 제8권2호
    • /
    • pp.227-236
    • /
    • 2019
  • In this study, we develop a Korotkoff sound based automatic blood pressure measurement device including sensor, hardware, and analysis algorithm. PVDF-based sensor pattern was developed to function as a vibration sensor to detect of Korotkoff sounds, and the film's output was connected to an impedance-matching circuit. An algorithm for determining starting and ending points of the Korotkoff sounds was established, and clinical data from subjects were acquired and analyzed to find the relationship between the values obtained by the auscultatory method and from the developed device. The results from 86 out of 90 systolic measurements and 84 out of 90 diastolic measurements indicate that the developed device pass the validation criteria of the international protocol. Correlation coefficients for the values obtained by the auscultatory method and from the developed device were 0.982 and 0.980 for systolic and diastolic blood pressure, respectively. Blood pressure measurements based on Korotkoff sound signals obtained by using the developed PVDF film-based sensor module are accurate and highly correlated with measurements obtained by the traditional auscultatory method.

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.

자동혈압계의 오실레이션 신호를 이용한 혈압 측정 (Measuring Blood Pressure Using Oscillation Signal from an Automatic Sphygmomanometer)

  • 김동준;김영수
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1720-1724
    • /
    • 2012
  • This study describes an oscillometric-based blood pressure measuring algorithm by detecting turning points of oscillation signal from digitally filtered cuff signals of an automatic sphygmomanometer. The blood pressure measuring algorithm uses a characteristic ratios method from the turning points. The accurate values of the systolic/diastolic blood presures(SBP/DBP) are calculated using the peaks in the ranges of characteristic ratios. Performances of the proposed algorithm and four automatic sphygmomanometers are compared with the mercury manometer(manual type sphygmomanometer), regarding the SBP and DBP values of manual sphygmomanometer as the reference values. The performance test showed the proposed algorithm revealed the best results in errors and a statistical analysis. Therefore this algorithm can be usable in any automatic sphygmomanometers.ssure states. This may be compromising results for subject-independent sensibility evaluation using EEG signal.

센서네트워크 수명 연장을 위한 에너지 임계값 기반 다단계 Back-Pressure 알고리즘 (A Back-Pressure Algorithm for Lifetime Extension of the Wireless Sensor Networks with Multi-Level Energy Thresholds)

  • 정대인
    • 한국통신학회논문지
    • /
    • 제33권12B호
    • /
    • pp.1083-1096
    • /
    • 2008
  • 본 논문에서는 센서네트워크의 수명 연장을 위해 에너지 인지 기반의 경로 제어 방안인 TBP(Threshold based Back-Pressure) 알고리즘을 제안하였다. 센서네트워크 수명 연장을 위해서는 에너지의 고른 소비가 필수적이므로, 라우팅 영역 전체에 걸친 고른 트래픽 분배를 설계목표로 갖는다. TBP 알고리즘은 지역적 트래픽 분배와 라우팅 영역 전체에서의 트래픽 분배를 모두 수행한다. 임계값과 back-pressure 신호가 이 두 가지 스케일의 트래픽 분배 수행을 위해 정의되었다. TBP 알고리즘은 라우팅 영역에 속한 다중경로의 최적 활용을 목적으로 하지만 이를 위해 사용하는 임계값과 back-pressure 신호는 한 흡 범위의 지역적 정보로 정의함으로써 망 규모에 제한받지 않는 확장성을 확보하였다. TBP 알고리즘이 에너지 소비를 분산시키는 효과, 즉 네트워크 수명을 연장하는 효과를 가지고 있음을 다양한 실험을 통하여 확인하였다. 또한, TBP 알고리즘은 엄격한 경로 제어를 기반으로 설계되었음에도 지연 및 전송률 지표에서 개선된 결과를 보였다. 에너지 인지 기반의 경로 제어가 트래픽 혼잡 제어의 효과를 부분적으로 갖고 있음을 보여주는 결과이다.