• Title/Summary/Keyword: Pressure-Drop

Search Result 2,354, Processing Time 0.031 seconds

Pressure Drop in a Helical Square Duct (나선형 사각덕트 내의 압력강하)

  • Ryu, Seung-Yeob;Yoon, Juh-Yeon;Lee, Doo-Jeong
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.398-403
    • /
    • 2001
  • Pressure drop at a helical square duct orifice is numerically evaluated. The orifice is installed at the entrance of a once-through steam generator tube to suppress flow instabilities. The calculated results are compared with the available experimental correlations, and showed good agreement. Effects of curvature ratio and characteristics of the secondary flow with Reynolds number are reported. Through the numerical simulations, pressure drop mechanisms were well understood inside the compact and complicated orifice geometry.

  • PDF

A NUMERICAL STUDY ON PLATE HEAT EXCHANGER PERFORMANCE BY GAP BETWEEN CHEVRON PLATES (판 사이 간격에 따른 판형 열교환기 성능에 관한 수치해석 연구)

  • Lee, Soo-Yoon;Ahn, Joon;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.347-354
    • /
    • 2009
  • Plate Heat Exchnager(PHE) has recently become widely adopted for cogeneration systems owing to its small installation space and high thermal efficiency. The gap between plates can be changed depending on its assemble type, i.e. gasket or blazing. The gap is known to affect thermal efficiency and working pressure drop in PHE with complicated geometrical features. Numerical simulation techniques have been developed to deal with PHE with complex configuration of chevron plates. The present study is aiming at identifying the gap effect on pressure drop and thermal efficiency of the PHE. The numerical simulation results show that the gap has relatively large effects on working pressure drop than thermal efficiency in performance of PHE.

  • PDF

Performance Evaluation of Heat Exchangers due to Air-side Particulate Fouling in the Air Conditioners (공기측 파울링에 의한 에어컨 열교환기의 성능분석 연구)

  • 안영철;조재민;이재근;이현욱;안승표;윤덕현;하삼철;강태욱
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.6
    • /
    • pp.447-453
    • /
    • 2003
  • The air-side particulate fouling in the heat exchangers of HVAC applications degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. Indoor and outdoor air contaminants foul heat exchangers. The purpose of this study is to investigate the cooling performance and pressure drop on the air-side particulate fouling of heat exchangers for air conditioners. Air conditioners being used in the field such as inn, restaurant, and office are collected in chronological used order. Test results show 15% decrease of the cooling capacity and 44% increase of the pressure drop for the 7 years air conditioners used in the seaside inn.

Experimental Studies on Heat Transfer and Pressure Drop Characteristics during Gas Cooling Process of Carbon Dioxide in the Supercritical Region (이산화탄소의 초임계 가스냉각 과정의 열전달 및 압력강하 특성에 관한 실험적 연구)

  • 윤석호;김주혁;김민수
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.6
    • /
    • pp.538-545
    • /
    • 2004
  • This paper presents the experimental data for the heat transfer and pressure drop characteristics obtained during the gas cooling process of carbon dioxide in a horizontal tube. The tube in which carbon dioxide flows is made of copper with an inner diameter of 7.73 mm. Experiments were conducted for various mass fluxes and inlet pressures of carbon dioxide. Mass fluxes are controlled at 225, 337 and 450 kg/$m^2$s and inlet pressures are adjust-ed from 7.5 to 8.8 ㎫. The experimental results in this study are compared with the existing correlations for the supercritical heat transfer coefficient, which generally under-predict the measured data. Pressure drop data agree very well with those calculated by the Blasius' equation. Based on the experimental data, a new empirical correlation to estimate the near-critical heat transfer coefficients has been developed.

Performance Evaluation of Gas Cleaning Industrial Filters using a Bi-Modal Test Aerosol for Dust Loading Studies

  • Lee, Jae-Keun;Kim, Seong-Chan;Benjamin Y.H. Liu
    • Journal of Energy Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-137
    • /
    • 1996
  • Typical size distribution of emission particulates is bi-modal in shape with particles in the fine mode (< 2.0 $\mu\textrm{m}$) and the coarse mode. An experimental study of pressure drop across the industrial gas cleaning filters has been conducted using particle mixture of fine alumina and coarse Arizona dusts with a rotating aerosol disperser to generate the bi-modal test aerosol. Pressure drop increased linearly with increasing mass loading. The pressure drop was found to be strongly dependent upon the mass ratio of fine to coarse particles. The smaller the mass ratio of fine to coarse particles and the higher face velocity are, the faster pressure drop rises. The fine particles and the greater inertia of the particle moving fast would cause a denser cake formation on the filter surface, resulting in a greater specific resistance to the gas flow.

  • PDF

Performance Test and Evaluation of Ship Exhaust Huffier (선박용 소음기 성능 시험 및 평가)

  • Kim, Bong-Ki;Kim, Sang-Ryul;Kim, Hyun-Sil;Shin, Min-Chol
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.158-163
    • /
    • 2008
  • Muffler design in the exhaust system is critical to provide for low noise in shipboard spaces. In an attempt to effectively design the low noise muffler, it is important to evaluate the performance of the muffler considering not only the noise, but also pressure drop as well. For this purpose, a test system of large exhaust muffler for ship propulsion systems was designed based on ISO 7235. The substitution test for determining both the insertion loss and pressure drop of mufflers was carried out. A ship exhaust muffler is considered as a test example and the insertion loss and pressure drop are obtained.

  • PDF

Optimum Design of a Compact Heat Exchanger with Foam Metal Insertion (발포금속을 삽입한 밀집형 열교환기 최적 설계)

  • 이대영;진재식;강병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.612-620
    • /
    • 2001
  • The optimum design of a heat exchanger with porous media insertion is studied in this paper. It is considered that the aluminum foam metal is inserted in a flat plate channel and air flows through it. The influence of the microstructure of the foam metal on the pressure drop and heat transfer is investigated utilizing previous analytical results and existing correlation equations. Design parameters are identified as the unit-cell size and the ligament thickness of the porous medium, and their effects are examined. The results show that there exists optimum microstructure of the porous media maximizing heat transfer with a constant pressure drop. When the increase in the pressure drop is within a practically acceptable range, the increase in the heat transfer is dominated by the increase in the heat transfer area due to the porous medium insertion. Consequently, among the porous media with a constant pressure drop, the heat transfer is maximized with a microstructure with maximum specific surface area.

  • PDF

Performance Evaluation in Fin-Tube Heat Exchanger by Tow-In Winglet Pairs (Tow in 와류발생기에 의한 핀-관 열교환기의 성능실험)

  • ;Kahoru Torii
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.2
    • /
    • pp.87-94
    • /
    • 2003
  • To reduce the air side pressure drop in air-cooled heat exchanger, tow-in type winglet vortex generators are applied. A specially designed multiple-channel test core was used in the experiments for the various geometry of winglet vortex generators. The proposed tow-in type vortex generator gives significant separation delay, reduces form drag, and removes the zone of poor heat transfer from near-wake of the tubes. The results show the significant pressure drop reduction for the tow-in win91e1 vortex generators with the similar enhancement of the heat transfer as other vortex generator applications in heat exchanger. In the range of Reynolds number of 350 to 2100 the pressure drop decrease 8∼15% and 34∼55% for the in-line and staggered tube banks, respectively, compared to those without vortex generators.

Effect of Triacetin and Activated Carbon on the Hardness of Cellulose Acetate Filter containing Activated Carbon (활성탄과 가소제가 탄소복합필터의 경도에 미치는 영향)

  • 신창호;김종열;김정열;김영호;이영택
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.22 no.2
    • /
    • pp.157-163
    • /
    • 2000
  • Filter hardness is important to filter and cigarette manufactures because it is directly related to the ability of a plugmaker during making filter and to the acceptability of the filter by the consumer. In general, glycerol triacetate(Triacetin, TA) is the currently used common plasticizer in making filters from cellulose acetate tow and the effect of triacetin on hardness of filter which is made of mono cellulose acetate tow was well known. But unfortunately, the effect of triacetin on the hardness of cellulose acetate filter containing ativated carbon(carbon filter) was not reported so far. In this study, we manufactured filters with various carbon content at different triacetin concentrations and then analyzed the filter hardness and pressure drop. Filter hardness was directly increased with triacetin concentration but pressure drop was not affected and the effect of carbon content on filter hardness was smaller than that of triacetin concentration. However, pressure drop was directly increased with carbon content.

  • PDF

A Study for the Pressure Drop of Static Mixers (스태틱 믹서의 압력손실에 대한 연구)

  • 양희천;박상규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.2
    • /
    • pp.299-304
    • /
    • 2003
  • Static mixer consists of a straight pipe of circular cross section into which individual elements are inserted to cut, fold, twist and re-combine the mixing fluid. The number of elements and their shape required in any application depend on the complexity of the mixing process. The objectives of this study are to develop a new static mixer and to perform the experimental investigation of pressure drop in order to evaluate the performance of the new one. The mixing fluid used is Glycerin. The pressure drop is measured using a hydraulic manometer and the correlation of Z-factor is suggested as a function of Re. The Z-factors of SSC and YNU mixer are about 40% lower than and 4% higher than that of the Sulzer one.