• Title/Summary/Keyword: Pressure-Based Boundary condition

Search Result 131, Processing Time 0.029 seconds

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

The Development of Rail-Transport Operation Control based on Unsaturated Soil Mechanics Concept (불포화토이론을 이용한 강우시 열차운전규제기준 개발)

  • Kim, Hyun-Ki;Shin, Min-Ho;Kim, Soo-Sam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.1 s.12
    • /
    • pp.25-31
    • /
    • 2004
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the rainfall and stability of railway embankment is defined to analyze the stability of embankment by rainfall. An experimental study for defining of infiltration rate of rainfall into slope is conducted in the lab. The results of Rainfall Infiltration show that rainfall Infiltration is not equal to infiltration as like reservoir because rate of rainfall infiltration is controlled by slope angle. Based on these results, boundary condition of rainfall is altered and various numerical analysis are performed. The variation of shear strength, the degree of saturation and pore-water pressure for railway slope during rainfall can be predicted and the safety factor of railway slope can be expressed as the function of rainfall amount, namely rainfall index. Therefore, it is judged that this rainfall index can be a good tool for the rail-transport operation control.

Numerical Study on Multiphase Flows Induced by Wall Adhesion (벽면부착에 의해 야기되는 다상유동에 관한 수치적 연구)

  • Myong, Hyon-Kook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.7
    • /
    • pp.721-730
    • /
    • 2012
  • The present paper presents a numerical study on multiphase flows induced by wall adhesion. The continuum surface force (CSF) model with the wall adhesion boundary condition model is used for calculating the surface tension force; this model is implemented in an in-house solution code (PowerCFD). The present method (code) employs an unstructured cell-centered method based on a conservative pressure-based finite-volume method with a volume capturing method (CICSAM) in a volume of fluid (VOF) scheme for phase interface capturing. The effects of wall adhesion are then numerically simulated by using the present method for a shallow pool of water located at the bottom of a cylindrical tank with no external forces such as gravity. Two different cases are computed, one in which the water wets the wall and one in which the water does not wet the wall. It is found that the present method efficiently simulates the surface tension-dominant multiphase flows induced by wall adhesion.

Analysis of Large-Amplitude Ship Motions Using a Cartesian-Gridbased Computational Method (직교격자 기반 수치기법을 이용한 선박의 대변위 운동해석)

  • Yang, Kyung-Kyu;Nam, Bo-Woo;Lee, Jae-Hoon;Kim, Yonghwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.461-468
    • /
    • 2012
  • In this study, a Cartesian-grid method based on finite volume approach is applied to simulate the ship motions in large amplitude waves. Fractional step method is applied for pressure-velocity coupling and TVD limiter is used to interpolate the cell face value for the discretization of convective term. Water, air, and solid phases are identified by using the concept of volume-fraction function for each phase. In order to capture the interface between air and water, the tangent of hyperbola for interface capturing (THINC) scheme is used with weighed line interface calculation (WLIC) method which considers multidimensional information. The volume fraction of solid body embedded in the Cartesian grid system is calculated using a level-set based algorithm, and the body boundary condition is imposed by a volume weighted formula. Numerical simulations for the two-dimensional barge type model and Wigley hull in linear waves have been carried out to validate the newly developed code. To demonstrate the applicability for highly nonlinear wave-body interactions such as green water on the deck, numerical analysis on the large-amplitude motion of S175 containership is conducted and all computational results are compared with experimental data.

Study for Fracture in the Last Stage Blade of a Low Pressure Turbine (화력발전용 저압터빈 최종 단 블레이드에 대한 파손 연구)

  • Lee, Gil Jae;Kim, Jae Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.423-428
    • /
    • 2016
  • The last stage blades of a low pressure (LP) turbine get frequently fractured because of stress corrosion cracking. This is because they operate in a severe corrosive environment that is caused by the impurities dissolved in condensed steam and high stress due to high speed rotation. To improve the reliability of the blades under severe conditions, 12% Cr martensitic stainless steel, having excellent corrosion resistance and higher strength, is widely used as the blade material. This paper shows the result of root cause analysis on a blade which got fractured suddenly during normal operation. Testing of mechanical properties and microstructure examination were performed on the fractured blade and on a blade in sound condition. The results of testing of mechanical properties of the fractured blade showed that the hardness were higher but impact energy were lower, and were not meeting the criteria as per the material certificate specification. This result showed that the fractured blade became embrittled. The branch-type crack was found to have propagated through the grain boundary and components of chloride and sulfur were detected on the fractured surface. Based on these results, the root cause of fracture was confirmed to be stress corrosion cracking.

Distribution of Vertical Earth Pressure due to Surcharge Loads Acting on Cantilever Retaining Wall Near Rigid Slope (강성경사면에 인접한 역T형 옹벽에 작용하는 상재하중에 의한 연직토압분포)

  • 유남재;이명욱;박병수;홍영길
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.141-152
    • /
    • 2002
  • This paper is the result of the experimental and numerical research on the distribution of vertical earth pressure due to surcharge loads acting on cantilever retaining wall close to a rigid slope with a stiff angle. Centrifuge model experiments were performed with changing the roughness of adjacent slope to the wall, distance between the wall and the slope and gravitational levels. Vertical earth pressures were measured by earth cells embedded in the backfill of the wall. Test results of vertical earth pressures due to surcharge loads were compared with theoretical estimations by using two different methods of limit equilibrium and the numerical analysis. For limit equilibrium methods, the modified silo and the wedge theories, proposed by Chung(1993, 1997), were used to analyze test results. Based on those modified theories, the particular solution with the boundary condition of surcharge loads on the surface of backfill was obtained to find the vertical stress distributions acting on the backfill. FLAC with the hyperbolic constitutive model was also used for the numerical estimation. As a result of comparison of test results with theoretical and numerical estimations, distribution of vertical earth pressures obtained from centrifuge model tests is generally in good agreement with numerical estmated values by using FLAC whereas the wedge theory shows values close to test results in case the distance between the wall and the slope is narrow.

Wave Forces Acting on a Cylindrical Aquaculture Fish Cage (원통형 양식시설물에 작용하는 파랑하중)

  • Cho, Il-Hyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.1
    • /
    • pp.63-69
    • /
    • 2011
  • In this paper, the wave forces on a cylindrical aquaculture fish cage, which consists of the porous mesh with the uniform porosity, are analyzed using matched eigenfunction expansion method. The boundary condition on the porous net is derived based on the Darcy's law, which implies that the velocity of the fluid passing through the net is linearly proportional to the pressure difference between two sides of the net. The wave forces and wave responses are investigated by changing the porous parameter of porous net as well as the submerged position (floating type, bottom-mounted type) of an aquaculture fish cage. It is found that the wave forces on a bottom-mounted type are largely decreased compared with that on a floating type. Also, the porosity of the netting structure plays an important role in reducing the wave forces and the wave elevation in the vicinity of an aquaculture fish cage.

NUMERICAL INVESTIGATION OF PLUME-INDUCED FLOW SEPARATION FOR A SPACE LAUNCH VEHICLE (우주발사체의 플룸에 따른 유동박리 현상에 대한 수치적 연구)

  • Ahn, S.J.;Hur, N.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.2
    • /
    • pp.66-71
    • /
    • 2013
  • In this paper, the supersonic flows around space launch vehicles have been numerically simulated by using a 3-D RANS flow solver. The focus of the study was made for investigating plume-induced flow separation(PIFS). For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras model was employed for the closure of turbulence. The Gauss-Seidel iteration was used for time integration. To validate the flow solver, calculation was made for the 0.04 scale model of the Saturn-5 launch vehicle at the supersonic flow condition without exhaust plume, and the predicted results were compared with the experimental data. Good agreements were obtained between the present results and the experiment for the surface pressure coefficient and the Mach number distribution inside the boundary layer. Additional calculations were made for the real scale of the Saturn-5 configuration with exhaust plume. The flow characteristics were analyzed, and the PIFS distances were validated by comparing with the flight data. The KSLV-1 is also simulated at the several altitude conditions. In case of the KSLV-1, PIFS was not observed at all conditions, and it is expected that PIFS is affected by the nozzle position.

Physical Property Change of the Gapless Semiconductor $PbPdO_2$ Thin Film by Ex-situ Annealing

  • Choo, S.M.;Park, S.M.;Lee, K.J.;Jo, Y.H.;Park, G.S.;Jung, M.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.371-372
    • /
    • 2012
  • We have studied lead-based gapless semiconductors, $PbPdO_2$, which is very sensitive to external parameters such as temperature, pressure, electric field, etc[1]. We have fabricated pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films using the pulsed laser deposition. Because of the volatile element of Pb, it is very difficult to grow the films. Note that in case of $MgB_2$, Mg is also volatile element. So in order to enhance the quality of $MgB_2$, some experiments are carried out in annealing with Mg-rich atmosphere [2]. This annealing process with volatile element plays an important role in making smooth surface. Thus, we applied such process to our studies of $PbPdO_2$ thin films. As a result, we found the optimal condition of ex-situ annealing temperature ${\sim}650^{\circ}C$ and time ~12 hrs. The ex-situ annealing brought the extreme change of surface morphology of thin films. After ex-situ annealing with PbO-rich atmosphere, the grain size of thin film was almost 100 times enlarged for all the thin films and also the PbO impurity phase was smeared out. And from X-ray diffraction measurements, we determined highly crystallized phases after annealing. So, we measured electrical and magnetic properties. Because of reduced grain boundary, the resistivity of ex-situ annealed samples changed smaller than no ex-situ sample. And the carrier densities of thin films were decreased with ex-situ annealing time. In this case, oxygen vacancies were removed by ex-situ annealing. Furthermore, we will discuss the transport and magnetic properties in pure $PbPdO_2$, Co- and Mn-doped $PbPdO_2$ thin films in detail.

  • PDF

Buckling Characteristics of Ship Bottom Plate - On the Stiffener Restraint Effects - (선박 선저외판의 좌굴특성에 관한 연구 - 보강재의 구속영향 검토 -)

  • Juh-H. Ham;Ul-N. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.31 no.4
    • /
    • pp.130-138
    • /
    • 1994
  • Bottom plates of empty hold are subjected to not only water pressure but also bi-axial inplane loads, specially in the alternate full loading full loading condition of bulk carrier. This kind of plate behaviours is very difficult to be explained and to be estimated using common buckling design guide in the initial design stage of hull structure, therefore, some more concrete studies for this plate structure was performed based on the currently developed buckling estimation formula. In this buckling formula, torsional stiffness effects of edge stiffener are included additionally and effects of elastic buckling strength of plate panel are treated as characteristic value problem. Also considering boundary stiffener effects and inplane and lateral loading, evaluation of bottom plate scantling using this formula, calculated results using various classification regulation of buckling strength and results of first report approach are compared each other and useful guides using developed formula for bottom plate scantling design are discussed.

  • PDF