• 제목/요약/키워드: Pressure vessel steel

검색결과 221건 처리시간 0.026초

Failure simulation of nuclear pressure vessel under severe accident conditions: Part II - Failure modeling and comparison with OLHF experiment

  • Eui-Kyun Park;Jun-Won Park;Yun-Jae Kim;Yukio Takahashi;Kukhee Lim;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권11호
    • /
    • pp.4134-4145
    • /
    • 2023
  • This paper proposes strain-based failure model of A533B1 pressure vessel steel to simulate failure, followed by application to OECD lower head failure (OLHF) test simulation for experimental validation. The proposed strain-based failure model uses simple constant and linear functions based on physical failure modes with the critical strain value determined either using the lower bound of true fracture strain or using the average value of total elongation depending on the temperature. Application to OECD Lower Head Failure (OLHF) tests shows that progressive deformation, failure time and failure location can be well predicted.

초고압 압력용기에서 메탈시일의 설계 안전성에 관한 연구 (A Study on the Design Safety of Metal Seals in High Pressure Vessels)

  • 김청균
    • 한국가스학회지
    • /
    • 제9권1호
    • /
    • pp.26-32
    • /
    • 2005
  • 본 논문에서는 고압용기의 밀봉을 위해 사용하는 메탈시일의 설계 안전성에 대한 연구결과를 제시하고 있다. 기본적으로 고압용기의 1차적 밀봉은 메탈시일에 의해 이루어지고, 2차적 밀봉은 탄성체 고무로 제작된 0-링에 의해 가스누출이 차단된다. 유한요소해석 결과에 의하면, 가스누출 차단을 위해 사용한 알루미늄 소재의 밀봉장치는 강재를 사용한 경우보다 우수한 밀봉성을 보여주고 있다. 이것은 알루미늄 소재의 열팽창 특성이 상대적으로 우수하기 때문이다. 메탈시일과 압력용기 구조물에 걸리는 변형과 응력분포는 외부에서 공급된 가스압보다는 용기 내부에서 전달된 온도차에 의해 크게 지배를 받는 것으로 알려져 있다. 따라서 메탈시일의 소재는 통상적으로 $200^{\circ}C$이하로 유지되는 것이 소재의 강도와 밀봉성 측면에서 안전하다.

  • PDF

압력용기 보강재의 용접 형태에 따른 피로균열성장 거동에 관한 연구 (A Study on the Fatigue Crack Growth Behaviour for the Welded Configuration in Pressure Vessel Stiffener)

  • 차용훈;김하식;성백섭
    • 한국안전학회지
    • /
    • 제16권3호
    • /
    • pp.1-6
    • /
    • 2001
  • The study is to investigate the influence on the fatigue crack growth behaviors for the welded configuration in pressure vessel stiffener. In order to perform this goal, the automatic welded specimens were prepared. The material is ASTM A516 grade 60 steel used in pressure vessel mainly. In skip welding of pad-on-plate, continuous fillet welding and PWHT specimen, fatigue crack is generally initiated at the starting and end old toe zone, and ruptured at the starting old toe zone. The fatigue life of pad-on-plate of the continuous fillet welding specimen is larger than that of pad-on-plate skip fillet welding specimen about 85% under low load, about 20% under high load and less than that of two-pad continuous fillet welding specimen about 85%. In da/dN-$\Delta$K curve under low load, skip fillet welding specimen of pad-on-plate showed retardation on the initial crack, and the fatigue crack growth rate at the low region of $\Delta$K greater specimen E($3.8 {\times} 10^{-6}mm/cycle$). And the fatigue life of welding specimen was smaller than that of PWHT specimen.

  • PDF

Thermoelastoplastic response of FGM linearly hardening rotating thick cylindrical pressure vessels

  • Ebrahimi, Tayebeh;Nejad, Mohammad Zamani;Jahankohan, Hamid;Hadi, Amin
    • Steel and Composite Structures
    • /
    • 제38권2호
    • /
    • pp.189-211
    • /
    • 2021
  • An analytical solution is presented to analyze the thermoelastoplastic response of a rotating thick-walled cylindrical pressure vessel made of functionally graded material (FGM). The analysis is based on Tresca's yield condition, its associated flow rule and linear strain hardening material behaviour. The uncoupled theory of thermoelasticity is used, and the plane strain condition is assumed. The material properties except for Poisson's ratio, are assumed to vary nonlinearly in the radial direction. Elastic, partially plastic, fully plastic, and residual stress states are investigated. The heat conduction equation for the one-dimensional problem in cylindrical coordinates is used to obtain temperature distribution in the vessel. It is assumed that the inner surface is exposed to an airstream and that the outer surface is exposed to a uniform heat flux. Tresca's yield criterion and its associated flow rule are used to formulate six different plastic regions for a linearly hardening condition. All these stages are studied in detail. It is shown that the thermoelastoplastic stress response of a rotating FGM pressure vessel is affected significantly by the nonhomogeneity of the material and temperature gradient. The results are validated with those of other researchers for appropriate values of the system parameters and excellent agreement is observed.

Ductile Fracture Behaviour under Mode I Loading Using Rousellier Ductile Damage Theory

  • Oh, Dong-Joon;Howard, I.C.;Yates, J.R.
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.978-984
    • /
    • 2000
  • The aim of this study is to investigate the ductile fracture behaviour under Mode I loading using SA533B pressure vessel steel. Experiments consist of the Round Notch Bar Test (RNB), Single Edge Crack Bending Test (SECB), and V-Notch Bar Test (VNB). Results from the RNB test were used to tune the damage modelling constant. The other tests were performed to acquire the J-resistance curves and to confirm the damage constants. Microstructural observation includes the measurement of crack profile to obtain the roughness parameter. Finally, simulation using Rousellier Ductile Damage Theory (RDDT) was carried out with 4-node quadrilateral element ($L_c=0.25\;mm$). For the crack advance, the failed element removal technique was adopted with a ${\beta}$ criterion. In conclusion, the predicted simulation using RDDT showed a good agreement with the experimental results. A trial using a roughness parameter was made for a new evaluation of J-resistance curve, which is more conservative than the conventional one.

  • PDF

압력용기용 Cr-Mo강의 균열진전거동에 관한 연구 (A Study on the Fatigue Crack Growth Behavior of Cr-Mo- Steel for Pressure Vessel)

  • 최병익;이학주;한승우;김창욱;차정환;김정태;지병하
    • 연구논문집
    • /
    • 통권29호
    • /
    • pp.91-99
    • /
    • 1999
  • Fatigue crack growth behaviors of Cr-Mo steels developed recently for thick-wall pressure vessel were investigated. Experiments in accordance with ASTM E647 standard were performed for 1/2 inch CT specimens of $2^(1/4)$Cr-1Mo and 3Cr-IMo steels in gaseous environments, hydrogen gas of 10 atm, 1 atm and argon gas of 1 atm. Fatigue crack growth rates were observed and effects of gaseous hydrogen and argon on the crack growth behavior were discussed.

  • PDF

원자로 압력용기 용접열영향부의 미세조직 및 재료물성 예측 (Estimation of Microstructures and Material Properties of HAZ in SA508 Reactor Pressure Vessel)

  • 이승건;김종성;진태은
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.138-143
    • /
    • 2001
  • To perform the rigorous integrity evaluation of RPV, it is necessary to consider metallurgical factors such as microstructure evolution during multi-pass welding process and PWHT. The microstructures of the heat affected zone(HAZ) of SA508 steel were predicted by a combination of simulated thermal analysis and a simple kinetic models for austenite grain growth and austenite-ferrite transformation. Phase equilibrium of SA508 steel were calculated using a Thermo-Calc package. Carbide growth in th HAZ were predicted by a empirical model, taking into account the predicted microstructure evolution.

  • PDF

원자력 압력용기용강 SA508Gr.3의 기계적 특성과 템퍼 파라메타에 관한 연구 (The Study of Nuclear Reactor Pressure Vessel Steel SA508Gr.3 Mechanical Properties and Temper-Parameter)

  • 김병옥;이오연
    • 열처리공학회지
    • /
    • 제25권3호
    • /
    • pp.121-125
    • /
    • 2012
  • The large forgings used in chemical plants or nuclear power plants are produced by complex heat treatment. because of thickness up to 200~300 mm and weight up to 200~300 ton, setting proper heat treatment cycle is so difficult. In addition, defects of products make companies wasting large money and valuable time. In this study, to reduce try & err, when setting heat treatment of reactor pressure vessel steel SA508Gr.3, carrying out the basic mechanical property test of SA508 Gr.3 and testing hardness of SA508Gr.3 in various tempering temperature. and calculating temper curve with Hollomon-Jaffe parameter.

D.D.I 공정으로 제조된 금속라이너를 이용한 CNG 복합재 압력용기의 설계 자동화 시스템 개발 (Development of an Automated Design System of CNG Composite Vessel using Steel Liner Manufactured by D.D.I Process)

  • 김의수;김지훈;박윤소;김철;최재찬
    • 한국정밀공학회지
    • /
    • 제20권1호
    • /
    • pp.205-213
    • /
    • 2003
  • The fiber reinforced composite material is widely used in the multi-industrial field where the weight reduction of the infrastructure is demanded because of their high specific modulus and specific strength. It has two main merits which are to cut down energy by reducing weight and to prevent explosive damage preceding to the sudden bursting which is generated by the pressure leakage condition. Therefore, Pressure vessels using this composite material in comparison with conventional metal vessels can be applied in the field such as defense industry, aerospace industry and rocket motor case where lightweight and the high pressure are demanded. In this paper, for nonlinear finite element analysis of E-glass/epoxy filament winding composite pressure vessel receiving an internal pressure, the standard interpretation model is developed by using the ANSYS, general commercial software, which is verified as the accuracy and useful characteristic of the solution based on Auto LISP and ANSYS APDL. Both the preprocessor for doing exclusive analysis of filament winding composite pressure vessel and postprocessor that simplifies result of analysis have been developed to help the design engineers.

부식된 얇은 원통 압력용기의 파손 거동 해석 (Analysis of Failure Behavior for Thin Cylinder Pressure Vessel with Corrosion)

  • 윤자문;최문오;안석환;남기우;안등 주
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.230-232
    • /
    • 2006
  • Failure behaviors of thin cylinder with corrosion are very important for the integrity of boiler and pressure vessel system. In this study, FEM with internal pressure are conducted on 1000 mm diameter (length 3000 mm and thickness, 5.9 mm) SS400 carbon steel. Failure behaviors of locally wall thinned cylinders were calculated by elasto-plastic analysis using finite element method. The elasto-plastic analysis was performed by FE code ANSYS. We simulated various types of local wall thinning that can be occurred at cylinder surface due to corrosion. Locally wall thinned shapes were machined to be different in size along the circumferential or axial direction of straight cylinder. In case of local wall thinned length 30 mm, internal pressure, when the crack initiation and the plastic collapse occur, didn't decrease dramatically even though local wall thinned depth was deep. In 400 mm, the more local wall thinned depth is deep, the more internal pressure decreased dramatically. In degraded materials, crack is easily initiation but plastic collapse was difficult.

  • PDF