• 제목/요약/키워드: Pressure valve

검색결과 1,786건 처리시간 0.029초

Bubble formation in globe valve and flow characteristics of partially filled pipe water flow

  • Nguyen, Quang Khai;Jung, Kwang Hyo;Lee, Gang Nam;Park, Hyun Jung;To, Peter;Suh, Sung Bu;Lee, Jaeyong
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.554-565
    • /
    • 2021
  • Air bubble entrainment is a phenomenon that can significantly reduce the efficiency of liquid motion in piping systems. In the present study, the bubble formation mechanism in a globe valve with 90% water fraction flow is explained by visualization study and pressure oscillation analysis. The shadowgraph imaging technique is applied to illustrate the unsteady flow inside the transparent valve. This helps to study the effect of bubbles induced by the globe valve on pressure distribution and valve flow coefficient. International Society of Automation (ISA) recommends locations for measuring pressure drop of the valve to determine its flow coefficient. This paper presents the comparison of the pressures at different locations along with the upstream and the downstream of the valve with the values at recommended positions by the ISA standard. The results show that in partially filled pipe flow, the discrepancies in pressure between different measurement locations in the valve downstream are significant at valve openings less than 30%. The aerated flow induces the oscillation in pressure and flow rate, which leads to the fluctuation in the flow coefficient of the valve. The flow coefficients have a linear relationship with the Reynolds number. For the same increase of Reynolds number, the flow coefficients grow faster with larger valve openings and level off at the opening of 50%.

Simulations of the Performance Factors on Vacuum System

  • Kim, Hyung-Taek
    • International journal of advanced smart convergence
    • /
    • 제6권4호
    • /
    • pp.1-8
    • /
    • 2017
  • In this work, the effects of fairly influential factors on performance of vacuum system, such as constant pressure and outgassing effect were simulated to propose the optimum design factors. Outgassing effects of selected vacuum materials on the vacuum characteristics were simulated by the $VacSim^{Multi}$ simulation tool. This investigation examined the feasibility of reliably simulating the outgassing characteristics of common vacuum chamber materials (aluminum, copper, stainless steel, nickel plated steel, Viton A). The optimum design factors for vacuum systems were suggested based on the simulation results. And, the effects of throttle valve applications on vacuum characteristics were also simulated to obtain the optimum design model of variable conductance on high vacuum system. Simulated vacuum characteristics of the proposed modelling were agreed with the observed experimental behaviour of real systems. Pressure limit valve and normally on-off control valve were schematized as the modelling of throttle valve for the constant process-pressure. Simulation results were plotted as pump-down curve of chamber and variable conductance of throttle valve. Simulated behaviors showed the applications of throttle valve sustained the process-pressure constantly, stably, and reliably.

릴리프밸브 쿠션기구 내장형 공기압 실린더의 구동 특성 (Driving Characteristics of Pneumatic Cylinder with Relief Valve Cushion Devices)

  • 김도태
    • 드라이브 ㆍ 컨트롤
    • /
    • 제13권4호
    • /
    • pp.7-13
    • /
    • 2016
  • This paper presents the meter-out and meter-in speed control characteristics of a pneumatic cylinder with relief valve type cushion device. The piston displacement and velocity are measured to investigate high speed driving performance with variation of the pressure setting in relief valve, air supply pressure, load mass, the supply and exhaust flow rate from the cylinder. Also, the internal pressures and temperatures driving pressure and cushion chamber are measured. The piston displacements and velocities of meter-out and meter-in control are compared experimentally determined data. A comparison experimental data meter-out and meter-in control show that a relief valve type cushion device is suitable for high speed pneumatic cylinders. The desired response characteristics of piston displacement and velocity are satisfactory adjust the pressure setting of a relief valve with varying system parameters such as air supply pressure, load mass and controlled flow rate.

압전 작동기로 구동 되는 공압 밸브의 압력제어 (Pressure Control of a Piezoactuator-Driven Pneumatic Valve System)

  • 조명수;유중규;최승복
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.399-405
    • /
    • 2002
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust H$_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

압전 작동기로 구동 되는 공압 밸브의 $H_{\infty}$ 압력제어 ([ $H_{\infty}$ ] Pressure Control of Pneumatic Valve Driven by Piezoactuators)

  • 유중규;조명수;최승복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집A
    • /
    • pp.673-678
    • /
    • 2001
  • This paper proposes a new type of piezoactuator-driven valve system. The piezoceramic actuator bonded to both sides of a flexible beam surface makes a movement required to control the pressure at the flapper-nozzle of a pneumatic valve system. After establishing a dynamic model, an appropriate size of the valve system is designed and manufactured. Subsequently, a robust $H_{\infty}$ control algorithm is formulated in order to achieve accurate tracking control of the desired pressure. The controller is experimentally realized and control performance for the sinusoidal pressure trajectory is presented in time domain. The control bandwidth of the valve system, which directly represents the fastness, is also evaluated in the frequency domain.

  • PDF

고제어 성능을 가진 버터플라이밸브의 개도각에 따른 유체유동에 대한 연구 (A Study on the Fluid Flow According to the Opening Angle of a Butterfly Valve with High Control Performance)

  • 유성훈;박상희;황정규;양희조
    • 한국산업융합학회 논문집
    • /
    • 제24권5호
    • /
    • pp.617-623
    • /
    • 2021
  • The objective of this study is to simulate valve flow coefficient and flow characteristics such as velocity and pressure distribution for butterfly valve. The size of the valve used in this study is 125A. The range of the valve opening angle was α=15°~70°, and it was changed by 5°. At the range of α=15°~30°, the valve flow coefficient K𝜐 gradually increased, and after α=30°, it increased rapidly. In the range of α=20°~70°, the pressure change in the -2.9cm~+2.9cm region in the pipe greatly depended on the opening angle and the position within the pipe. However, after +2.9cm, the pressure at the rear end of the valve was shown to depend only on the opening angle. At α=20°, Vortex shedding occurred for the first time at time t=0.25sec and continuously occurred in rear end of the valve over time. After α=45°, in the flow pattern at the rear end of the valve, the upward flow at the lower end of the valve and the flow at the upper end met each other to form a mixed flow. This flow phenomenon was shown to form a more intense mixed flow in the rear end region as the opening angle increased. Vortex flow occurred for the first time at α=15°, and the opening angle increased, the occurrence and disappearance of this flow phenomenon occurred periodically according to the certain flow region. The pattern of the pressure distribution in the region at the rear end of the valve showed a tendency to agree well with the results of the vorticity distribution.

비례압력제어밸브 개발 (A Development of Proportional Pressure Control Valve)

  • 윤소남;안병규;류재섭;함영복
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1041-1046
    • /
    • 2004
  • A proportional pressure control valve has a nonmagnetic ring which is inserted in between a coil and plunger and it can get attraction force in proportion to input current by an influence of control cone. Therefore, a proportional pressure control valve is applied to a servo system as substitution of servo valve and an on-off solenoid valve widely because control of a high level is possible and pollution level is low. The purpose of this study is to develop domestic model of a proportional pressure control valve, and a test model was designed and manufactured through valve system analysis and finite element analysis. And comparison between results of theoretical analysis and static / dynamic characteristics test were carried out on a manufactured test model, and it was confirmed that it has excellent performance in comparison with other foreign products.

  • PDF

차량 자세제어 시스템의 비례압력제어밸브 해석모델 개발 및 최적화 설계 (Optimization Design and Development of the Proportional Pressure Control Valve Analysis Model of Active Body Control)

  • 김동명;장주섭;손태관
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.127-134
    • /
    • 2014
  • Active body control system is an important system for determining the driving stability and ride comfort of the vehicle. Active body control system is composed of a cylinder unit power supply unit, and control valve unit. Control valve is a proportional pressure control valve, the dynamic characteristics of the valve affects the performance of the active body control system. We have developed an analytical model, we analyzed the design parameters of the proportional pressure control valve. Further, by knowing the design parameters effect on the system and to optimize the design parameters, and improved performance of the dynamic properties.

초저온 볼밸브의 열 응력 및 유동해석 (Thermal stress and Flow Analysis of a Cryogenic Ball Valve)

  • 배상규;이원희;김현섭;김동수
    • 유공압시스템학회논문집
    • /
    • 제3권4호
    • /
    • pp.8-13
    • /
    • 2006
  • The high pressure cryogenic ball valve is used to transfer the liquefied natural gas which temperature is $-196^{\circ}C$, supplied pressure is $168kgf/cm^2$. In the present work, the temperature distribution and thermal deformation is calculated numerically. The CAR and CFD methods are useful to predict the thermal matter and the inner flow field of high pressure cryogenic ball valve. For this reason, to optimum design of the cryogenic ball valve, the theological behavior of the supplied LNG in a cryogenic valve has been studied. The governing equations are discredited and solved numerically by the finite-volume method and finite-element method. In this study, we designed the high pressure cryogenic ball valve that accomplishes zero leakage by elastic seal at normal temperature and metal seal at high temperature.

  • PDF

CO2냉매용 제어밸브의 응답 특성 (Transient Response Analysis of a Control Valve for CO2 Refrigerant)

  • 김보현;장지성
    • 드라이브 ㆍ 컨트롤
    • /
    • 제15권4호
    • /
    • pp.11-16
    • /
    • 2018
  • Pilot operated control valve for $CO_2$ refrigerant is a valve that can perform various functions according to the user's intention by replacing pilot units, widely used for flow rate, pressure, and temperature control of refrigeration and air conditioning systems. In addition, $CO_2$ refrigerant, that requires high pressure and low critical temperature, can be installed and used in all positions of the refrigeration system, regardless of high or low pressure. In this paper, response characteristics are modeled and analyzed based on behavior of the main piston of the pilot-operated control valve. Although various factors influence operation of the main piston, this paper analyzes the effect of equilibrium pressure depending on valve installation position and application, and inlet and outlet orifice size of the load pressure feedback chamber to determine feedback characteristics of the main piston. As a result, it was possible to quantitatively analyze the effect of change in equilibrium and load pressure feedback chamber flow path size on the change in main piston dynamic and static characteristics.