• Title/Summary/Keyword: Pressure tank

Search Result 840, Processing Time 0.028 seconds

A Study on Pressure Vessel using Cold Stretch Method (냉연신 공법을 이용한 압력용기의 제조에 관한 연구)

  • Han, Kyu-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.153-160
    • /
    • 2018
  • A pressure vessel consists of an inner tank and the outer tank; the material of the inner tank is austenite stainless steel, and the outer tank is general carbon steel. As the storage amount increase, the size of the inner tank for LNG also increases, which eventually increases the weight of the LNG storage tank. The Cold Stretch method can transport and store the LNG in a larger amount than the conventional pressure container, and the weight of the pressure vessel can also be reduced at 50 70% due to the reduction of the thickness, which is excellent from an economic and energy consumption perspective. Although the Cold Stretch method has these advantages, the domestic situation has not developed any related legislation. In this study, the actual production of pressure vessels using the Cold Stretch method will be processed and the volume expansion after the Cold Stretch will be checked and compared with the mechanical properties.

Dynamic analysis of water storage tank with rigid block at bottom

  • Adhikary, Ranjan;Mandal, Kalyan Kumar
    • Ocean Systems Engineering
    • /
    • v.8 no.1
    • /
    • pp.57-77
    • /
    • 2018
  • The present paper deals with the finite element analysis of water tanks with rigid baffle. Fluid is discretized by two dimensional eight-node isoparametric elements and the governing equation is simulated by pressure based formulation to reduce the degrees of freedom in the domain. Both free vibration and force vibration analysis are carried out for different sizes and positions of block at tank bottom. The fundamental frequency depends on block height and it reduces with the increase of block height. The variation of hydrodynamic pressure on tank walls not only depends of the exciting frequency but also on the size and position of rigid block at tank bottom. The hydrodynamic pressure has higher value when the exciting frequency is equal and lower than the fundamental frequency of the water in the tank. Similarly, the hydrodynamic pressure increases with the increase of width of the block for all exciting frequencies when the block is at the centre of tank. The left and right walls of tank have experienced different hydrodynamic pressure when the block is placed at off-centre. However, the increase in hydrodynamic pressure on nearest tank wall becomes insignificant after a certain value of the distance between the wall and the rigid block.

Stability Analysis of LNG Storage Tank with Ground Freezing (LNG 저장탱크의 기초 지반 동결시 안정성에 대한 평가)

  • Shin, Eun-Chul;Kim, Soo-Wan;Park, Jung-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1218-1231
    • /
    • 2008
  • Recently the energy dependence of LNG resource is being increased. So the enlargement of LNG storage is constructed in the coastal area. Most of LNG tanks are constructed below the ground level, and thus the hydraulic uplift pressure could be a problem against the weight of tank structure. Specifically, the settlement of foundation soil in the LNG tank is also important in the aspect of safety. The low temperature around LNG tank is induced the ground freezing and hence increasing the soil volume and earth pressure. The additional lateral earth pressure due to ground freezing could be applied to the LNG tank. In this study, the stability of LNG storage tank was evaluated with consideration of freezing earth pressure by using computer program TEMP-W.

  • PDF

On the Prediction of Inner Pressure for the Tank in Rolling Motion (동요하는 탱크의 내부 변동압력 추정에 관한 연구)

  • Lee, Seung-Keon;Sea, Young-seok
    • Journal of Navigation and Port Research
    • /
    • v.27 no.5
    • /
    • pp.459-464
    • /
    • 2003
  • The inner liquid pressure of an airtight tank in rolling motions is investigated by means of forced oscillation tests, and the simple method to estimate the inner liquid pressure is proposed. A rectangular solid tank, which is fully filled with water, was used in the forced oscillation test of rolling motion. The inner pressure variations in time were measured at several points on the inner walls of tank. Measured pressures are compared with the calculated ones, and estimation methods of the inner liquid pressure of the tank in rolling motion are studied based on the considerations of the origin of pressure.

The Evaluation of Strength for the Corner Block Structure in the LNG Tank using Sloshing Pressure of the Scaled Tank (모형수조 슬로싱 하중을 이용한 LNG 탱크 코너블럭(Corner Block) 구조물의 구조강도 평가)

  • Park, Jun Hyeong;Park, Si Jong;Kim, Seong Hoon;Choi, Jae Min;Jun, In Ki
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.5
    • /
    • pp.327-333
    • /
    • 2013
  • The purpose of this study is to predict sloshing pressure of a actual tank by using measured pressure in scaled down tank and to evaluate with structural strength of LNG Corner Block. For this purpose, we performed sloshing analysis about 138K class tank by using Ansys CFX program, and were measured both average pressure and maximum peak pressure according to scaled tank ratio. Also, measured pressure was converted to pressure of the actual tank by Froude scale law, and we conducted the evaluation of structural strength about the conner block of actual size KC-1.

Behavior of cryogenic gases in a closed space (밀폐된 공간에서 초저온 액화가스의 거동)

  • 이현철;강형석;박두선;손무룡
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.48-51
    • /
    • 2000
  • The behavior of cryogenic liquid stored in a closed cryogenic tank has been studied at various liquid levels, as a function of pressure and temperature on time, assuming heat leak(NER) is 0.7%/day. The pressure depends, as expected, on the liquid-vapor ratio in a tank. The calculation shows that if liquid level is as high as 90%,much higher than the critical volume ration, in a closed tank of designed pressure 11 bar, it takes 5.4 to 15days for the entire volume of the tank to be filled with liquid and 11 to 22 days for the tank to be exploded. If a closed tank is full of liquid, it is extremely dangerous because of abrupt pressure increase so that the safety devices are necessary to vent out pressurized gas. These phenomena can be explained with the liquid heat capacity, latent heat and compressibility.

  • PDF

Characteristics of sloshing load and flow inside a tank with cylinder structures (실린더 구조물을 설치한 탱크 내부의 슬로싱 하중과 유동 특성)

  • Ki Jong Kim;Hyun-Duk Seo;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.31-39
    • /
    • 2023
  • Sloshing of the fluid having a free surface produces an impact force on a tank wall subjected to external excitation. This paper investigates the effect of cylindrical structures in a rectangular sloshing tank under translational harmonic excitations. By varying the number of installed cylinders in the tank, the characteristics of the free-surface deformation is experimentally observed, and the peak pressure on the tank wall is extracted by threshold values. To predict the peak pressure, the numerical simulation is also conducted using smoothed particle hydrodynamics (SPH), and the peak values are compared with the experimental results. Furthermore, pressure and velocity fields in the tank and free-surface shape are analyzed at the moment of impact.

Longitudinal Modal Analysis of a LOX-filled Tank Using the Virtual Mass Method

  • Lee, SangGu;Sim, JiSoo;Shin, SangJoon;Kim, Youdan
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.4
    • /
    • pp.807-815
    • /
    • 2017
  • For liquid rocket engine(LRE)-based space launch vehicles, longitudinal instability, often referred to as the pogo phenomenon in the literature is predicted. In the building block of system-level task, accurate dynamic modeling of a fluid-filled tank is an essential. This paper attempts to apply the virtual mass method that accounts for the interaction of the vehicle structure and the enclosed liquid oxygen to LOX-filled tanks. The virtual mass method is applied in a modal analysis considering the hydroelastic effect of the launch vehicle tank. This method involves an analysis of the fluid in the tank in the form of mass matrix. To verify the accuracy of this method, the experimental modal data of a small hemispherical tank is used. Finally, the virtual mass method is applied to a 1/8-scale space shuttle external tank. In addition, the LOX tank bottom pressure in the external tank model is estimated. The LOX tank bottom pressure is the factor required for the coupling of the LOX tank with the propulsion system. The small hemispherical tank analysis provides relatively accurate results, and the 1/8-scale space shuttle external tank provides reasonable results. The LOX tank bottom pressure is also similar to that in the numerical results of a previous analysis.

Internal Pressure Variation Analysis and Actual Holding Time Test on ISO LNG Tank Container (LNG 탱크 컨테이너의 내부압력 변화 분석 및 실제 홀딩타임 측정)

  • Ryou, Young-Don;Lee, Jin-Han;Jo, Young-Do;Oh, Young-Sam;Cha, Kyong-Ho
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.6
    • /
    • pp.1-7
    • /
    • 2013
  • Internal pressure variation analysis and actual holding time test on ISO LNG tank containers which were made in Korea for the first time according to the special notification of ISO tank container manufacture have been conducted during the transport demonstration projects of the tank containers by tractor, train and ship. The internal pressure of the LNG tank container increased rapidly after LNG filling and dropped during moving the container. However, it was stabilized as time passed and followed the liquid-vapor equilibrium graph. In addition, actual holding time of the tank container was more than 20 days which was satisfied with the special notification of LNG tank container manufacture.

An Empirical Study for the Safe and Effective Operations in Membrane LNG Ships focused on the Tank Cool Down

  • Gim, S.G.;Kim, S.W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.566-572
    • /
    • 2005
  • The most crucial factor in membrane LNG ships to ensure sage operations, is how to effectively control tank pressure at the time of excessive generation of boil off gas (BOG). When the ships carry out tank cool down with her retaining heel prior to arrival at loading port, the vessel encounters the critical situation of excessive BOG and high tank pressure that can lead to high degree of risk. This is to provide one of the best ways to secure safe and effective LNG ship operations focusing on the detailed methods of tank cool down to achieve ATR(Arrival Temperature requirement) without building up high tank pressure and excessive BOG and calculating the appropriate heel quantity to be unutilized for tank cool down and fuel during ballast voyage.

  • PDF