• Title/Summary/Keyword: Pressure support

Search Result 1,122, Processing Time 0.02 seconds

Pressure Analysis of Sterntube after Bush Bearing Considering Elastic Deflection of Misaligned Journal and Partial Slope of Bearing Bush (탄성 변형된 저어널의 편심과 베어링 부시의 부분경사를 고려한 선미관 후부 베어링의 압력분포 해석)

  • Choung, Joon-Mo;Choe, Ick-Heung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.666-674
    • /
    • 2007
  • It is very important to estimate static squeezing pressure distributions for lining material of sterntube after bearing at dry dock stage since the maximum squeezing pressure value can be one of the significant characteristics representing coming navigation performances of the propulsion system. Moderate oil film pressure between lining material and propulsion shaft is also essential for safe ship service. In this paper, Hertz contact theory is explained to derive static squeezing pressure. Reynolds equation simplified from Navier-Stokes equation is centrally differentiated to numerically obtain dynamic oil film pressures. New shaft alignment technology of nonlinear elastic multi-support bearing elements is also used in order to obtain external forces acting on lining material of bearing. For 300K DWT class VLCC with synthetic bush of sterntube after bearing, static squeezing pressures are calculated using derived external forces and Hertz contact theory. Optimum partial slope of the after bush is presented by parametric shaft alignment analyses. Dynamic oil film pressures are comparatively evaluated for partially bored and unbored after bush. Finally it is proved that the partial slope can drastically reduce oil film pressure during engine running.

The contact loads inversion between surrounding rock and primary support based on dynamic deformation curve of a deep-buried tunnel with flexible primary support in consideration

  • Jian Zhou;Yunliang Cui;Xinan Yang;Mingjie Ma;Luheng Li
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.575-587
    • /
    • 2024
  • The contact pressure between the surrounding rock and the support is an important indicator of the surrounding rock pressure. There has been a bottleneck in the prediction of contact loads between surrounding rock and primary support in deep-buried mountain tunnels. The main reason is that a reliable method wasn't existed to quantify the contact loads. This study had been taken into account the flexible support role of the primary support, and the fitting curve of surrounding rock deformation for dynamic tunnel construction was proposed. New formulas for the calculation of contact loads between surrounding rock and primary support were obtained by inversion. Comparative analysis of the calculation results with numerical simulation verified the reliability of the calculation method in this study. It can be seen from the analyses that the contact load between surrounding rock and primary support increases, remains unchanged and decreases during acceleration, uniform velocity and deceleration, respectively, and the deformation of the surrounding rock in the acceleration and deceleration stages cannot completely converted into contact loads. The contact loads between surrounding rock and primary support of medium-strength and weak surrounding rock tunnels are generally within 150 kPa and 1 MPa, respectively. For tunnels with weak surrounding rock, advanced support can be installed to reduce the unique release coefficient λ0 and the value of the constant D, with the purpose of reducing the contact loads between surrounding rock and primary support. Changes in support parameters have a small effect on the contact loads between surrounding rock and primary support, but increase or decrease the safety factor, resulting in a waste of resources or a situation that threatens the safety of the support. The results of this research provide guidance for the prediction of contact loads between surrounding rock and primary support for dynamic tunnel construction.

Hydrophilizing Effect of Support on PRO Membrane Performance through Cellulose Solution Treatment (셀룰로오스에 의한 지지체 친수화가 압력지연삼투막 성능에 미치는 영향)

  • Choi, Myungho;Koo, Kee-Kahb;Lim, Jung Ae;Kim, BeomSik
    • Membrane Journal
    • /
    • v.23 no.6
    • /
    • pp.425-431
    • /
    • 2013
  • This paper has studied the hydrophilizing effect of support on the performance of pressure retarded osmosis (PRO). The hydrophilicity of polyester support has been controlled with cellulose solutions. In order to investigate the effect of hydrophilizing of support, the performance test has been conducted with membrane which compose of active layer and support in absence of support layer. The active layer has been made by casting of cellulose tri-acetate (CTA) 1,4-dioxane solution (13 wt%) and combined with the hydrophilized support. The results show that water fluxes of PRO membranes with hydrophobic or hydrophilized support were measured $0.8L/m^2hr$ and $1.2L/m^2hr$ under $5kgf/cm^2$ pressure, respectively. However, water flux increase did not accord with hydrophilicity of supports treated by cellulose solutions. It is because the porosity and pore size of supports decrease as the cellulose concentration increases. This result confirms that both the hydrophilization of support and the maintenance of membrane porosity are important to enhance the performance of PRO membrane.

The Effect of Abdominal Drawing-in Maneuver with Pressure Biofeedback Unit in Various Postures on Abdominal Muscle Contraction

  • Lee, Seunghoon;Lee, Sangyeol
    • Physical Therapy Rehabilitation Science
    • /
    • v.11 no.2
    • /
    • pp.136-144
    • /
    • 2022
  • Objective: This study was to identify the effect of pressure biofeedback applied in various postures that allow the application of abdominal drawing-in. Design: A cross sectional study. Methods: The study intended to compare changes in the thickness of abdominal muscles between different postures when abdominal drawing-in was performed using a pressure biofeedback unit in five postures and to compare differences in terms of measures such as the transverse abdominis's preferential activation ratio(PAR). Data measured from 30 healthy individuals were used for data analysis. A paired t-test and repeated measures analysis of variance was performed to compare the thickness of each abdominal muscle. Results: The transverse abdominis's and internal oblique's thickness showed statistically significant differences in all postures when abdominal drawing-in (p<0.05). In the comparison between the postures, statistically significant differences were observed between the positions of hook-lying and wall support standing and between supine and wall support standing and between hook-lying and sitting (p<0.05). In terms of the transverse abdominis's PAR in each posture, statistically significant differences were observed between hook-lying and quadruped, hook-lying and sitting, hook-lying and wall support standing, quadruped and supine, sitting and supine, as well as wall support standing and supine (p<0.05). Conclusions: When abdominal drawing-in using pressure biofeedback unit is performed for stabilization exercises, selecting and applying specific postures according to targeted muscles and the subject's functional ability will help provide a more efficient and accurate intervention.

A Study on the Development of a Calf Supporter for Improving Balance Capacity (균형능력 향상을 위한 종아리 서포터 개발에 관한 연구)

  • Hwang, Sunkyu;Park, Jinhee;Kim, Jooyong
    • Journal of Fashion Business
    • /
    • v.25 no.1
    • /
    • pp.39-50
    • /
    • 2021
  • The purpose of this study was to investigate how wearing calf support and applying of electronic muscle simulation(EMS) affected the ability to balance. In this study, the one leg standing test for static balance and the Y balance test for dynamic balance were used to assess balance. At this time, the pressure of the calf support was different to produce two supporters, and a difference between wearing the support before, after, and after applying EMS was evaluated. Seven men in their 20s with healthy bodies were measured five times each with a five-minute break, taking into account muscle fatigue, and the difference between each variable was analyzed through a follow-up test using nonparametric statistical analysis. Studies have shown more difference from supporter B with a more appropriate pressure (mmgh) for increasing balance capability than from supporter A. In addition, it was confirmed that the use of EMS electrostimulation and support before measuring the balance capability resulted in a greater difference. The proper pressure (mmgh) supporters and EMS can increase the ability to balance, and these results can be expected to improve the balance ability of ordinary people in their daily lives.

Development of Stress Indices for Trunnion Pipe Support (원통형 배관 지지대의 응력계수 개발)

  • 김종민;박명규;엄세윤;이대희;박준수
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.115-123
    • /
    • 1996
  • A finite element analysis of a trunnion pipe anchor is presented. The structure is analyzed for the case of internal pressure and moment loadings. The stress results are categorized into the average (membrance) and the linearly varying(bending) stresses through the thickness. The resulting stresses are interpreted per Section III of the ASME Boiler and Pressure Vessel Code from which the Primary (B/sub 1/) and Secondary(C/sub 1/) stress indices for pressure, the Primary(B/sub 2R/, B/sub 2T/) and Secondary(C/sub 2R/, C/sub 2T/) stress indices for moment are developed. Several analyses were performed for various structural geometries in order to obtain empirical representation for the stress indices in terms of dimensionless ratios.

  • PDF

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Effect of Seepage Forces on the Tunnel Face Stability - Assessing through Model Tests - (침투력이 터널 막장의 안정성에 미치는 영향 연구 - 모형실험을 중심으로 -)

  • 이인모;안재훈;남석우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.41-48
    • /
    • 2001
  • In this study, two factors are simultaneously considered for assessing tunnel face stability: one is the effective stress acting on the tunnel face calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady-state groundwater flow. The seepage forces calculated by numerical analysis are compared with the results of a model test. From the results of derivations of the upper bound solution with the consideration of seepage forces acting on the tunnel face, it could be found that the minimum support pressure for the face stability is equal to the sum of effective support pressure and seepage pressure acting on the tunnel face. Also it could be found that the average seepage pressure acting on the tunnel face is proportional to the hydrostatic pressure at the same elevation and the magnitude is about 22% of the hydrostatic pressure for the drainage type tunnel and about 28% for the water-proof type tunnel. The model tests performed with a tunnel model had a similar trend with the seepage pressure calculated by numerical analysis. From the model tests it could be also found that the collapse at the tunnel face occurs suddenly and leads to unlimited displacement.

  • PDF

Factors Affecting the Introduction of the Internet by Fashion Companies (패션 기업의 인터넷 도입의도에 영향을 미치는 요인에 관한 연구)

  • Lee, Eun-Jin
    • Journal of the Korean Home Economics Association
    • /
    • v.46 no.5
    • /
    • pp.87-96
    • /
    • 2008
  • The purpose of this study was to establish which factors were considered when fashion companies discussed the intention of employing the internet in various capacities. A total of 228 candidates were surveyed between 17-11-07 and 17-01-08. The collected data was used to conduct various descriptive and comparative analyses. Firstly, environmental factors considered important were internal pressure, external pressure and uncertainty of the market. Organizational factors considered important were support of the chief executive officer, capacity of the organization and future directivity. Profit factors considered important were elevation of the business, customer relationship management, advantage of the internet and reduction of expenses. Prohibitive factors considered important were miscellaneous expenses, secession of the customer, internal opposition of the organization and convertible expenses. Secondly, fashion companies regarded internal pressure, external pressure, support of the chief executive officer, capacity of the organization, future directivity, elevation of the business, customer relationship management, advantage of the internet and miscellaneous expenses as important when discussing the introduction of the internet.

Parental Expectations of Academic Performance and Adolescents' Adjustment Behaviors (부모의 학업기대 유형과 청소년의 적응)

  • 이재구;김영희
    • Journal of the Korean Home Economics Association
    • /
    • v.38 no.12
    • /
    • pp.145-158
    • /
    • 2000
  • The purpose of this study was to examine the relative importance of parental expectations to adolescents'psychological, behavioral, school-based adjustment, and academic achievement. Subjects of this study consisted of 359 adolescents(177 boys and 182 girls) in Cheong-ju City. There was a statistically meaningful difference in the effect of parental expectations of academic performance on adolescents'adjustment according to sex of adolescents'. Maternal pressure, support form mothers, and paternal pressure were significant factors predicting adolescents'relative psychological adjustment and academic achievement. Support and pressure from mothers were associated with adolescents'behavioral adjustment. The research suggest that maternal pressure was the strongest risk factors in relation to the effects of parental expectations of academic performance on adolescents'adjustment.

  • PDF