• Title/Summary/Keyword: Pressure oscillations

Search Result 163, Processing Time 0.026 seconds

Numerical Analysis of Nonlinear Combustion Instability Using Pressure-Sensitive Time Lag Hypothesis (시간지연 모델을 이용한 비선형 연소불안정 해석기법 연구)

  • Park Tae-Seon;Kim Seong-Ku
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.7 s.250
    • /
    • pp.671-681
    • /
    • 2006
  • This study focuses on the development of numerical procedure to analyze the nonlinear combustion instabilities in liquid rocket engine. Nonlinear behaviors of acoustic instabilities are characterized by the existence of limit cycle in linearly unstable engines and nonlinear or triggering instability in linearly stable engines. To discretize convective fluxes with high accuracy and robustness, approximated Riemann solver based on characteristics and Euler-characteristic boundary conditions are employed. The present procedure predicts well the transition processes from initial harmonic pressure disturbance to N-like steep-fronted shock wave in a resonant pipe. Longitudinal pressure oscillations within the SSME(Space Shuttle Main Engine) engine have been analyzed using the pressure-sensitive time lag model to account for unsteady combustion response. It is observed that the pressure oscillations reach a limit cycle which is independent of the characteristics of the initial disturbances and depends only on combustion parameters and operating conditions.

Droplet Vaporization in High Pressure Environments with Pressure Oscillations (강한 압력 교란에 구속된 고압 액적의 천이 기화)

  • 김성엽;윤웅섭
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.157-163
    • /
    • 2003
  • A systematic numerical experiment has been conducted to study droplet gasification in high pressure environments with pressure oscillations. The general frame of previous rigorous model[1] is retained but tailored for flash equilibrium calculation of vapor-liquid interfacial thermodynamics. Time-dependent conservation equations of mass, momentum, energy, and species concentrations are formulated in axisymmetric coordinate system for both the droplet interior and ambient gases. In addition, a unified property evaluation scheme based on the fundamental equation of state and empirical methods are used to find fluid thermophysical properties over the entire thermodynamic domain of interest. The governing equations with appropriate physical boundary conditions are numerically time integrated using an implicit finite-difference method with a dual time-stepping technique. A series of calculation have been carried out to investigate the gasification of an isolated n-pentane droplet in a nitrogen gas environment over a wide range of ambient pressures and frequencies. Results show that the mean pressures and frequencies of the ambient gas have strong influences on the characteristics of the droplet gasification. The amplitude of the response increases with increasing pressure, and the magnitude of the vaporization response increases with the frequency.

  • PDF

Passive Control of the Supersonic Cavity Pressure Oscillations Using Porous Vertical Barrier (수직 다공벽을 이용한 초음속 공동 압력진동의 피동제어)

  • Kang, Min-Sung;Kwon, Joon-Kyeong;Kim, Heuy-Dong;Setoguchi, Toshiaki
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.3
    • /
    • pp.27-33
    • /
    • 2009
  • A computational study has been performed out to evaluate the effect of a vertical porous barrier on the pressure oscillations in a supersonic cavity. The porous barriers with different perforations were vertically installed into a rectangular cavity at Mach numbers 1.50, 1.83 and 2.50. TVD finite difference MUSCL scheme was employed to solve the two-dimensional, unsteady, compressible Navier-Stokes equations. The present vertical porous barrier considerably altered the characteristics of the time-dependent shear layers that occur at the upstream edge of cavity and remarkably reduced the pressure oscillations inside the supersonic cavity. The present results showed that the effectiveness of passive control using the present porous vertical barrier is dependent on Mach number and the perforation of the porous barrier.

Symptoms of Self-excited Combustion Oscillation and their Detection

  • Yang, Young-Joon;Akamatsu, Fumiteru;Katsuki, Masashi;Bae, Suk-Tae;Kim, Si-Pom
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.10
    • /
    • pp.1859-1868
    • /
    • 2004
  • Monitoring of OH chemiluminescence through an optical fiber was demonstrated to be a useful method in detecting self-excited combustion oscillations. OH chemiluminescence intensity detected by the optical fiber showed mostly excellent agreement with those obtained by high speed CCD camera measurements when combustion oscillations were strong. Symptoms of self-excited combustion oscillation were also studied in order to predict the onset of combustion oscillation before it proceeded to a catastrophic failure. For the purpose, we have found and proposed unique measures to tell the onset of self-excited combustion oscillations based on the careful statistics of fluctuating properties in flames, such as pressure or emission of OH radicals.

A Study on Combustion-Driven Oscillations in a Surface Burner (표면연소기의 연소진동음에 관한 연구)

  • Han, Heekab;Kwon, Youngpil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.11
    • /
    • pp.1582-1590
    • /
    • 1998
  • Combustion-driven oscillations in a surface burner have been investigated to clarify their characteristics. A model combustor is made and the oscillation frequencies are measured for various dimensions of the combustor. It is found that there are two modes of oscillations; one is the 'acoustic mode' at high frequencies, associated with the acoustic mode of the combustion system and the other is the 'combustion mode' at low frequencies around 100 Hz, associated with the instability of the flame. Acoustic mode is excited when the surface burner is placed where the phase of particle velocity leads that of acoustic pressure by $90^{\circ}$, for all the combustion conditions. Combustion mode is driven at high combustion rate by the lift of unstable flame near the lower limit of the combustible equivalence ratio. Combustion mode is greatly influenced by the inlet temperature of the premixed gas. When the inlet temperature is very high, the combustion mode does not occur.

SELF-PULSATION CHARACTERISTICS OF A SWIRL COAXIAL INJECTOR WITH VARIOUS INJECTION AND GEOMETRIC CONDITIONS

  • Im, Ji-Hyuk;Kim, Dong-Jun;Yoon, Young-Bin;Bazarov, V.
    • Journal of ILASS-Korea
    • /
    • v.10 no.3
    • /
    • pp.29-37
    • /
    • 2005
  • The spray and acoustic characteristics of a gas/liquid swirl coaxial injector are studied experimentally. The self-pulsation is defined as a pressure and flow rate oscillations by a time-delayed feedback between liquid and gas phase. Self-pulsation has strong influences on atomization and mixing processes and accompanies painful screams. So. the spray and acoustic characteristics are investigated. Spray patterns are observed by shadow photography technique in order to determine the onset of self-pulsation. And self-pulsation boundary with Injection conditions and recess length is get. To measure the frequency of the spray oscillation. oscillation of the laser intensity which passes through spray is analyzed by Fast Fourier Transform. For acoustic tests, a PULSE System was used. Acoustic characteristics of a swirl coaxial injector are investigated according to the injection conditions. such as the pressure drop or the liquid and gas phase. and injector geometries. such as recess length and gap size between the inner and outer injector. Front the experimental results. the increase of recess length leads to the rapid increase of the sound pressure level. And as the pressure drop of the liquid phase increases. the frequency of the self?pulsation shifts to the higher frequency. The frequency of spray oscillations is the same as that of the acoustic fields by self-pulsation.

  • PDF

A New Method for Artifact Reduction Based on Capacitive Sensor and Adaptive Filter in Oscillometric Blood Pressure Measurement (오실로메트릭 혈압 측정에서 커패시턴스 센서와 적응필터를 이용한 새로운 잡음제거방법에 관한 연구)

  • Choi, Hyun-Seok;Park, Ho-Dong;Lee, Kyoung-Joung
    • Journal of Biomedical Engineering Research
    • /
    • v.29 no.3
    • /
    • pp.239-248
    • /
    • 2008
  • In this study, a new method using a capacitive sensor and an adaptive filter was proposed to deal with artifacts contaminating an oscillation signal in oscilometric blood pressure measurement. The proposed method makes use of a variation of the capacitance between an electrode fixed to a cuff and an external object to detect artifacts caused by the external object bumping into the cuff. The proposed method utilizes the adaptive filter based on linear prediction to remove the detected artifacts. The conventional method using linear interpolation and the proposed method using the adaptive filter were applied to three types of the artifact-contaminated oscillation signals(no overlap, non-consecutive overlap, and consecutive overlap between artifacts and oscillations) to compare them in terms of the artifact reduction performance. The proposed method was more robust than the conventional method in the case of consecutive overlap between artifacts and oscillations. The proposed method could be useful for measuring blood pressure in such a noisy environment that the subject is being transported.

Analysis on the Unsteady Reacting Flow-field in Integrated Rocket Ramjet (일체형 로켓 램제트의 비정상 반응유동장 해석)

  • Ko, Hyun;Park, Byung-Hun;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1494-1498
    • /
    • 2004
  • Transition sequence of rocket to ramjet was simulated numerically for a two-dimensional axisymmetric can-type ramjet engine. Multi-species preconditioned Navier-Stokes equations with $k-{\varepsilon}$ turbulence model and finite-rate chemistry model was employed. To calculate transition sequence, initial flow-field conditions for inlet diffuser with closed port-cover was computed first, and then that result was applied as initial conditions after port-cover opened. Terminal shock was developed as a result of increased pressure in a combustor due to combustion and ramjet operated at supercritical condition. For a smaller nozzle throat area, buzz instability was occurred. Strong pressure oscillations were observed as a result of forward and backward movement of terminal shock and those oscillations were not damped out.

  • PDF

Reduction of the Cavity Flow Oscillations at Supersonic Speeds (초음속 공동유동에서의 진동감소)

  • Kang, Min-Sung;Shin, Choon-Sik;Kwon, Joon-Kyung;Kim, Heuy-Dong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.345-348
    • /
    • 2008
  • The subcavity passive control technique is used in present study. Cavity-induced pressure oscillation has been investigated numerically for a supersonic three-dimensional flow over rectangular cavities at Mach number 1.83 at the cavity entrance. The three-dimensional, compressible Navier-stokes equations are numerically solved based on a fully implicit finite volume scheme. The results showed that the resultant amount of attenuation of cavity-induced pressure oscillations was dependent on the length and thickness of the flat plate.

  • PDF