• Title/Summary/Keyword: Pressure material

Search Result 4,569, Processing Time 0.031 seconds

Analysis for Deformation and Fracture Behavior of Magnesium during Equal Channel Angular Pressing by the Finite Element Method (마그네슘의 등통로각압축 공정 시 변형 및 파괴 거동에 대한 유한요소해석)

  • Yoon, Seung Chae;Pham, Quang;Kim, Hyoung Seop
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.3
    • /
    • pp.144-149
    • /
    • 2008
  • Equal channel angular pressing (ECAP) has been studied intensively over the decade as a typical top-down process to produce ultrafine/nano structured materials. ECAP has successfully been applied for a processing method of severe plastic deformation to achieve grain refinement of magnesium and to enhance its low ductility. However, difficult-to-work materials such as magnesium and titanium alloys were susceptible to shear localization during ECAP, leading to surface cracking. The front pressure, developed by Australian researchers, can impose hydrostatic pressure and increase the strain level in the material, preventing the surface defect on workpiece. In the present study, we investigated the deformation and fracture behavior of pure magnesium using experimental and numerical methods. The finite element method with different ductile fracture models was employed to simulate plastic deformation and fracture behavior of the workpiece.

The Characteristics of Frost Heaving Pressure on the Railroadbed Materials (철도노반재료의 동상 팽창압 특성에 관한 연구)

  • 신은철;박정준;이창섭
    • Proceedings of the KSR Conference
    • /
    • 2002.05a
    • /
    • pp.264-270
    • /
    • 2002
  • The frost heaving pressure can be a problem for weakening of the railroadbed material. In this study, upon freezing a saturated soil in a closed-system from the top, a considerable pressure was developed. This pressure is induced as a result of a curved ice-water interface. This study was initiated to investigate the soils frost heaving expansion pressure and physical characteristics resulting from freezing and freezing-thawing cycle process. Weathered granite soils, sandy soil were used in the laboratory freezing test subjected to thermal gradients under closed-systems.

  • PDF

The Fabrication of Chromium Nitride Thin-Film Type Pressure Sensors for High Pressure Application and Its Characteristics (고압용 코롬질화박막형 압력센서의 제작과 그 특성)

  • 정귀상;최성규;서정환;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.6
    • /
    • pp.470-474
    • /
    • 2001
  • This paper describes the fabrication and characteristics of CrN thin-film type pressure sensors, in which the sensing elements were deposited on SuS. 630 diaphragm by DC reactive magnetron sputtering in an argon-nitride atmosphere(Ar-(10%)N$_2$). The optimized condition of CrN thin-film sensing elements was thickness range of 3500$\AA$ and annealing condition(300$\^{C}$, 3 hr) in Ar-10%N$_2$ deposition atmosphere. Under optimum conditions, the CrN thin-films for strain gauges is obtained a high resistivity, ρ=1147.65 $\mu$Ωcm, a low temperature coefficient of resistance, TCR=186ppm/$\^{C}$ and a high temporal stability with a good longitudinal, 11.17. The output sensitivity of fabricated CrN thin-film type pressure sensors is 2.36 mV/V, 4∼20nA and the maximum non-linearity is 0.4%FS and hysteresis is less than 0.2%FS.

  • PDF

Cell morphology of microcellular foaming injection molding products with pressure drop rate (초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화)

  • 김학빈;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

Analysis of Structural Characteristics of HDPE Pipe for Manganese Lifting Test (근해역 양광시험을 위한 HDPE Pipe의 구조특성 연구)

  • Lee, Jae-Hwan;Yoon, Chi-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.6
    • /
    • pp.86-90
    • /
    • 2011
  • The mining of imitated manganese noodles in 1000 m of seawater is planned for 2012. Thus, it is necessary to prepare the lifting pipes to be used for the test. Because of storage and expense constraints, flexible and economic HDPE pipe is being considered, making it necessary to test the structural safety. Material, pressure-chamber tests and finite element analysis of HDPE pipe for the 1000-m depth were performed. The tangential stiffness of HDPE was obtained through tension and three-point bending material tests and used for a structural analysis. FEA results show that the current sample pipe segment is safe for 1000 m of water pressure, and the stress result is also within the safe value. From the current results, the HDPE pipe seems to be acceptable only for the currently suggested constraints. However, more numerical and pressure tests need to be considered by applying additional physical conditions such as gravitational and hydrodynamic loads, external and internal fluid pressure, axial force induced ship motion, and heavy pump pressure to determine future usage.

Optimization for Friction Welding of AZ31 Mg Alloy by Design of Experiments (실험계획법에 의한 AZ31마그네슘합금의 마찰접합시 최적공정설계)

  • Kang, Dae-Min;Kwak, Jae-Seob;Choi, Jong-Whan;Park, Kyeong-Do
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.4
    • /
    • pp.64-69
    • /
    • 2011
  • Magnesium alloy has been known as lightweight material in automobile and electronic industry with aluminum alloy, titanium alloy and plastic material. Friction welding is useful to join different kinds of metals and nonferrous metals they are difficult to be joined by such as gas welding, resistance welding and electronic beam welding. In this study, friction welding was performed to investigate optimization process of Mg alloy with a 20mm diameter solid bar. For that, the orthogonal array $(L_{9}(3^{4}))$ was used that contained four factors and each factor had three levels. Control factors were heating pressure, heating time, upsetting pressure and upsetting time. Also tensile tests were carried out to measure mechanical properties for welded conditions. The levels of heating pressure and upsetting pressure used were 15, 25, 35MPa, and 30, 50, 70MPa, respectively. In addition those of heating time and upsetting time were 0.5, 1, 1.5 sec and 3, 4, 5 sec., respectively, rotating speed of 2000rpm. From the experimental results, optimization condition was estimated as follows; heating pressure=35MPa, upsetting pressure=70MPa, heating time=1.5sec, upsetting time=3sec.

Interrelation of the Diamond Disk and pad PCR in the CMP Process (CMP 공정에서 Diamond Disk와 Pad PCR 상관관계 연구)

  • Yun, Young-Eun;No, Yong-Han;Yoon, Bo-Earn;Bae, Sung-Hun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.359-361
    • /
    • 2006
  • As circuits become increasingly complex and devices sizes shrinks, the demands placed on global planarization of higher level. Chemical Mechanical Polishing (CMP) is an indispensable manufacturing process used to achieve global planarity. In the CMP process, Diamond Disk (DD) plays an important role in the maintenance of removal rate. According to studies, the cause of removal rate decrease in the early or end stage of diamond disk lifetime comes from pad surface change. We also presented pad cutting rate (PCR) as a useful cutting ability index of DD and studied PCR trend about variable parameters that including size, hardness, shape of DD and RPM, pressure of conditioner It has been shown that PCR control ability of pressure and shape is superior to RPM and size. High pressure leads to a decrease of cell open ratio of pad surface because polyurethane of pad is destroyed by pressure. So low pressure high RPM condition is a proper removal rate sustain. By examining correlations between RPM and pressure of conditioner, it has been shown that PCR safe zoneto satisfy proper removal rate has the range 0.06mm/hr to 0.12mm/hr.

  • PDF

Effect of Pressure on Edge Delamination in Chemical Mechanical Polishing of SU-8 Film on Silicon Wafer

  • Park, Sunjoon;Im, Seokyeon;Lee, Hyunseop
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.282-287
    • /
    • 2017
  • SU-8 is an epoxy-type photoresist widely used for the fabrication of high-aspect-ratio (HAR) micro-structures in micro-electro-mechanical systems (MEMS). To fabricate highly integrated structures, chemical mechanical polishing (CMP) has emerged as the preferred manufacturing process for planarizing the MEMS structure. In SU-8 CMP, an oxidizer decomposes organic impurities and particles in the CMP slurry remove the chemically reacted surface of SU-8. To fabricate HAR microstructures using the CMP process, the adhesion between SU-8 and substrate material is important to avoid the delamination of the SU-8 film caused by the mechanical-dominant material removal characteristic. In this study, the friction force during the CMP process is measured with a CMP monitoring system to detect the delamination phenomenon and investigate the delamination of the SU-8 film from the silicon substrate under various pressure conditions. The increase in applied pressure causes an increase in the frictional force and wafer-edge stress concentration. The frictional force measurement shows that the friction force changes according to the delamination phenomenon of the SU-8 film, and that it is possible to monitor the delamination phenomenon during the SU-8 CMP process. The delamination at a high applied pressure is explained by the effect of stress distribution and pad deformation. Consequently, it is necessary to control the pressure of polishing, which can avoid the delamination in SU-8 CMP.

A Study on the Light Stimulus Properties by Azobenzene Organic Thin Films (아조벤젠 유기박막의 광자격 특성에 관한 연구)

  • 조수영;김성진;송진원;이순형;정헌상;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.41-44
    • /
    • 1999
  • Displacement current was generated in the pressure stimulus and light stimulus. Solution of azobenzene molecules (8A5H) have to character trans-to-cis. Pressure stimulus generate in the pressure and current. light stimulus generate in the displasement current. The Maxwell displacement current measuring technique has been applied for the investigation of azobenzene organic thin films under alternating photoirradiation with ultraviolet(360nm) and visible (450nm) light. The displacement current was generated due to the trans-to-cis photoisomerization by irradiation with ultraviolet light(λ$_1$=360 nm) Whereas the displacement current was generated in the opposite direction due to the cis-to-trans photoisomerization by irradiation with visible light(λ$_2$=450nm). As result, To show twice reaction certainly phase transition in pressure. A first range generated from 24$\AA$$^2$ to 29$\AA$$^2$and second range generated from 20$\AA$$^2$to 24$\AA$$^2$. Also, cetainfy stimulus apper low pressure and high pressure in photoirradiation. To see different every moment phase transition.

  • PDF

Field Measurements with the Construction of Cut and Cover Tunnel (복개 터널구조물의 현장 시공에 따른 계측 분석 사례)

  • 박시현;이석원;이규필;배규진;전오성;이종성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.149-156
    • /
    • 2002
  • Field measurements were carried out in this study to investigate the behavior of cut and cover tunnel such as the distribution and the magnitude of the earth pressure during back fill process of the ground material. Three kinds of measuring instruments, such as the earth pressure load cell, the concrete strain gauge and the reinforcing bar meter of embedded type in concrete structure were installed and measured. Earth pressure load cells, installed after construction of the tunnel lining, measure the outside forces acting on the tunnel lining with radial directions. Three load cells were installed at the crown, the right and the left shoulder of the tunnel, respectively. Three sets of reinforcing bar meter were installed in the double reinforcements of the tunnel lining and their locations were the same with the position of the earth pressure load cells. Concrete strain gauge was installed only one site of the upper compressive part at the tunnel crown. Based on the measuring results in the field, the deformation and the earth pressure acting on the tunnel lining were investigated with the back fill process of the ground material. Considerations on the validity of the measuring results were paid. For the analysis of measurements, after dividing back fill process into three steps, various factors which affect on the behavior of tunnel lining were investigated at each step.

  • PDF