• Title/Summary/Keyword: Pressure gain

Search Result 311, Processing Time 0.025 seconds

THE SUCCESS AND FAILURE OF TREATMENT BY USING LIP BUMPER (Lip Bumper를 이용한 치료의 성공과 실패)

  • Maeng, Myung-Ho;Kim, Jong-Bin;Kim, Jong-Soo;Kim, Yong-Kee
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.26 no.3
    • /
    • pp.507-512
    • /
    • 1999
  • In the mixed dentition, many children have mild crowding of anterior dentition on the mandibular arch and mesial tilting of mandibular molar. Lip bumper have been used to gain arch length for the alignment of mild to moderate crowded dental arches. As such, they may provide an alternative to extraction therapy. The claimed therapeutic effect of the lip bumper is bodily forward incisor movement, flaring of the lower incisors, and distal tipping of the molar. The dental changes can be attributed to removal of lip pressure on the lower anterior dentition and the distal forces exerted at the molar abutment. The purpose of this study is to show more easily method of treatment for mild anterior crowding of mandible.

  • PDF

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

Simulation of Neutron irradiation Corrosion of Zr-4 Alloy Inside Water Pressure reactors by Ion Bombardment

  • Bai, X.D.;Wang, S.G.;Xu, J.;Chen, H.M.;Fan, Y.D.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.96-109
    • /
    • 1997
  • In order to simulate the corrosion behavior of Zr-4 alloy in pressurized water reactors it was implanted (or bombarded) with 190ke V $Zr^+\; and \;Ar^+$ ions at liquid nitrogen temperature and room temperature respectively up to a dose of $5times10^{15} \sim 8\times10^{16} \textrm{ions/cm}^2$ The oxidation behavior and electrochemical vehavior were studied on implanted and unimplanted samples. The oxidation kinetics of the experimental samples were measured in pure oxygen at 923K and 133.3Pa. The corrosion parameters were measured by anodic polarization methods using a princeton Applied Research Model 350 corrosion measurement system. Auger Electron Spectroscopy (AES) and X-ray Photoelectric Spectroscopy (XPS) were employed to investigate the distribution and the ion valence of oxygen and zirconium ions inside the oxide films before and after implantation. it was found tat: 1) the $Zr^+$ ion implantation (or bombardment) enhanced the oxidation of Zircaloy-4 and resulted in that the oxidation weight gain of the samples at a dose of $8times10^{16}\textrm{ions/cm}^2$ was 4 times greater than that of the unimplantation ones;2) the valence of zirconium ion in the oxide films was classified as $Zr^0,Zr^+,Zr^{2+},Zr^{3+}\; and \;Zr^{4+}$ and the higher vlence of zirconium ion increased after the bombardment ; 3) the anodic passivation current density is about 2 ~ 3 times that of the unimplanted samples; 4) the implantation damage function of the effect of ion implantation on corrosion resistance of Zr-4 alloy was established.

  • PDF

A Design of Reference Model Following Fuzzy Control System for Boiler-Turbine Equipment (보일러-터빈 설비에 대한 기준모델 추종 퍼지 제어시스템의 설계)

  • 정호성;황창선;황현준
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.11 no.4
    • /
    • pp.82-91
    • /
    • 1997
  • In this paper, a design method of the boiler-turbine control system in the coal fired power plant is proposed. We need to control electric output and drum pressure and water level in drum to guarantee stable operation and save energy for generating electricity and decrease air pollution in the boiler-turbine system. This boiler-turbine control system is composed of reference model part and model following part. The multivariable boiler-turbine system is separated into 3 SISO(Single Input Single Output) systems applying the concept of relative gain matrix. Each 3 reference models for separated boiler-turbine system are composed of 1st order nominal plant and hysteresis integral control system and they make good dy¬namic response with no overshoot and fast rising time. Each fuzzy controller to follow as close as possible to the response of each reference model is designed. The robustness and the good tracking property can be achieved using 5150 fuzzy controllers when there are modeling errors, disturbances and parameter pertur¬bations. The effectiveness of the proposed design method is verified through simulations.

  • PDF

Performance Improvement of Pneumatic Artificial Muscle Manipulators Using Magneto-Rheological Brake

  • Ahn, Kyoung-Kwan;Cong Thanh, TU Diep;Ahn, Young-Kong
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.778-791
    • /
    • 2005
  • A novel pneumatic artificial muscle actuator (PAM actuator), which has achieved increased popularity to provide the advantages such as high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks, has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. Then it is not easy to realize the performance of transient response of pneumatic artificial muscle manipulator (PAM manipulator) due to the changes in the external inertia load with high speed. In order to realize satisfactory control performance, a variable damper-Magneto­Rheological Brake (MRB), is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control method brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity, uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control method and without regard for the changes of external inertia loads.

Effect of dietary betaine on short chain fatty acid and blood profile in meat duck exposed to extreme heat stress (베타인이 폭염 오리의 짧은 사슬지방산 및 혈액 프로파일에 미치는 효과)

  • Hwangbo, Jong;Bang, Han-Tae;Park, Byung-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.394-404
    • /
    • 2015
  • This study investigated the pharmacodynamics of betaine on the blood profile and short chain fatty acid levels in meat ducks exposed to heat wave. 400 heads of Cherry valley (Anasplatyrhynchos) meat ducks were completely randomized to 5 treatments (4 repetitions each), and were raised for 42 days. They were grouped into T1 (heat wave control group without betaine), T2 (betaine 400 ppm), T3 (betaine 800 ppm), T4 (betaine 1200 ppm), and T5 (normal control group without betaine). Compared to T1, the betaine addition groups showed higher body weight gain at shipment, with T3 showing the highest significant difference. For hematological indictors measured (red blood cells and platelets), the betaine addition groups showed significantly higher values than the heat wave control group. The pH of the former was lower but their electrolytes ($K^+$, $P^+$, and $Cl^-$) were significantly higher compared to the latter. For blood gas concentration, the former showed a significantly higher value than the latter. For the total short chain fatty acids, acetic acid, and propionic acid, the betaine addition groups and group fed broiler-high temperature diet showed higher values than the heat wave control group. On the other hand, the former showed significantly lower values in butyric acid, isobutyric acid, valeric acid, and isovaleric acid than the latter group. These results suggest that betaine has the pharmacodynamics that mediate heat stress, via the maintenance and control of the blood profile, osmotic pressure, gas concentration, and short chain fatty acid, of meat ducks under heat wave.

Intelligent Phase Plane Switching Control of Pneumatic Artificial Muscle Manipulators with Magneto-Rheological Brake

  • Thanh, Tu Diep Cong;Ahn, Kyoung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1983-1989
    • /
    • 2005
  • Industrial robots are powerful, extremely accurate multi-jointed systems, but they are heavy and highly rigid because of their mechanical structure and motorization. Therefore, sharing the robot working space with its environment is problematic. A novel pneumatic artificial muscle actuator (PAM actuator) has been regarded during the recent decades as an interesting alternative to hydraulic and electric actuators. Its main advantages are high strength and high power/weight ratio, low cost, compactness, ease of maintenance, cleanliness, readily available and cheap power source, inherent safety and mobility assistance to humans performing tasks. The PAM is undoubtedly the most promising artificial muscle for the actuation of new types of industrial robots such as Rubber Actuator and PAM manipulators. However, some limitations still exist, such as the air compressibility and the lack of damping ability of the actuator bring the dynamic delay of the pressure response and cause the oscillatory motion. In addition, the nonlinearities in the PAM manipulator still limit the controllability. Therefore, it is not easy to realize motion with high accuracy and high speed and with respect to various external inertia loads in order to realize a human-friendly therapy robot To overcome these problems a novel controller, which harmonizes a phase plane switching control method with conventional PID controller and the adaptabilities of neural network, is newly proposed. In order to realize satisfactory control performance a variable damper - Magneto-Rheological Brake (MRB) is equipped to the joint of the manipulator. Superb mixture of conventional PID controller and a phase plane switching control using neural network brings us a novel controller. This proposed controller is appropriate for a kind of plants with nonlinearity uncertainties and disturbances. The experiments were carried out in practical PAM manipulator and the effectiveness of the proposed control algorithm was demonstrated through experiments, which had proved that the stability of the manipulator can be improved greatly in a high gain control by using MRB with phase plane switching control using neural network and without regard for the changes of external inertia loads.

  • PDF

Fabrication and characterization of the SiGe HBTs using an RPCVD (RPCVD를 이용한 실리콘 게르마늄 이종 접합 바이폴라 트랜지스터 제작 및 특성 분석)

  • 한태현;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.8
    • /
    • pp.823-829
    • /
    • 2004
  • In this paper, non-self-aligned SiGe HBTs with ${f}_\tau$ and${f}_max $above 50 GHz have been fabricated using an RPCVD(Reduced Pressure Chemical Vapor Deposition) system for wireless applications. In the proposed structure, in-situ boron doped selective epitaxial growth(BDSEG) and TiSi$_2$ were used for the base electrode to reduce base resistance and in-situ phosphorus doped polysilicon was used for the emitter electrode to reduce emitter resistance. SiGe base profiles and collector design methodology to increase ${f}_\tau$ and${f}_max $ are discussed in detail. Two SiGe HBTs with the collector-emitter breakdown voltages ${BV}_CEO$ of 3 V and 6 V were fabricated using SIC(selective ion-implanted collector) implantation. Fabricated SiGe HBTs have a current gain of 265 ∼ 285 and Early voltage of 102 ∼ 120 V, respectively. For the $1\times{8}_\mu{m}^2$ emitter, a SiGe HBT with ${BV}_CEO$= 6 V shows a cut-off frequency, ${f}_\tau$of 24.3 GHz and a maximum oscillation frequency, ${f}_max $of 47.6 GHz at $I_c$of 3.7 mA and$V_CE$ of 4 V. A SiGe HBT with ${BV}_CEO$ = 3 V shows ${f}_\tau$of 50.8 GHz and ${f}_max $ of 52.2 GHz at $I_c$ of 14.7 mA and $V_CE$ of 2 V.

Fuzzy PD plus I Controller of a CSTR for Temperature Control

  • Lee, Joo-Yeon;So, Hye-Rim;Lee, Yun-Hyung;Oh, Sea-June;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.563-569
    • /
    • 2015
  • A chemical reaction occurring in CSTR (Continuous Stirred Tank Reactor) is significantly affected by the concentration, temperature, pressure, and reacting time of materials, and thus it has strong nonlinear and time-varying characteristics. Also, when an existing linear PID controller with fixed gain is used, the performance could deteriorate or could be unstable if the system parameters change due to the change in the operating point of CSTR. In this study, a technique for the design of a fuzzy PD plus I controller was proposed for the temperature control of a CSTR process. In the fuzzy PD plus I controller, a linear integral controller was added to a fuzzy PD controller in parallel, and the steady-state performance could be improved based on this. For the fuzzy membership function, a Gaussian type was used; for the fuzzy inference, the Max-Min method of Mamdani was used; and for the defuzzification, the center of gravity method was used. In addition, the saturation state of the actuator was also considered during controller design. The validity of the proposed method was examined by comparing the set-point tracking performance and the robustness to the parameter change with those of an adaptive controller and a nonlinear proportional-integral-differential controller.

An Investigationi into the Dynamic Characteristics of Turbine and Gear Motor Type Flowmeters (터빈형과 기어모터형 유량계의 동특성 검토)

  • 예용택
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.83-89
    • /
    • 2000
  • In hydraulic control system turbine and gear motor type flowmeters are widely used to measure the flow rate under steady flow conditions. With the recent growth of interest in the measurement of instantaneous values of unsteady flow rate the test of the transient response of these flowmeters are in some significance. however an unsteady flow rate mea-surment and its calibration method with a fast response and a high accuracy have not beendeveloped. In this research particularly the dynamic characteristics of turbine and gear motor type flowmeters are investigated experimentally and simple mathematical models are proposed. The measured flow rate waveforms are compared with those by remote instan-taneous flow rate measurement method(RIFM) which has been developed by author and used for calibration As the result of frequency response test gain and phase between the measured flow rate waveforms by turbine type flowmeter and those estimated by RIFM are in good agreement up to 70Hz For the gear motor type flowmeter th simulated results by a math-ematical model proposed here agree well with the experiment nearly up to 100Hz. Also it if sound that the pressure drop across the flowmeter is increased in proportion to the frequency of the flow rate variation in a high frequency region of more than 100Hz. It can be explained that the dealy of gear motor type flowmeter in high frequency regionis mainly attributed to a first order delay consisting of the inertia of gears and internal leakage of the gear motor.

  • PDF