• Title/Summary/Keyword: Pressure estimation

Search Result 993, Processing Time 0.025 seconds

Safety Estimation of High Pressure Drop Control Valve for Offshore Structures (해양플랜트용 고압.고차압 제어밸브의 구조 안전성 평가)

  • Kim, Jae-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.553-558
    • /
    • 2011
  • This study have goal with conceptual design for offshore structures of high pressure drop control valve for localization valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25. In order to localize the Offshore structures high pressure drop control valve. This study is numerical analysis for zambil offshore project of high pressure drop control valve. The solver which ANSYS workbench used for offshore structures analysis. The working fluids assumed the glycerin(C3H8O3). The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and disk structure. In this study a multi-disk of high pressure drop control valve is designed and manufactured. Then, the flow rate and high pressure dorp of fluids flowing in the high pressure drop control valve is CAE. So, this system can be easily substituted for the existing zambil offshore project system. Finally, safety estimation for trim design of high pressure drop control valve for offshore structures.

Blood Pressure Simulation using an Arterial Pressure-volume Model

  • Yoon, Sang-Hwa;Kim, Jae-Hyung;Ye, Soo-Young;Kim, Cheol-Han;Jeon, Gye-Rok
    • Transactions on Electrical and Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.38-43
    • /
    • 2008
  • Using an arterial pressure-volume (APV) model, we performed an analysis of the conventional blood pressure estimation method using an oscillometric sphygmomanometer with computer simulation. Traditionally, the maximum amplitude algorithm (MAA) has been applied to the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected by the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPF) circuitry. Experimental errors result from these effects when estimating blood pressure. To determine an algorithm independent of the influence of waveform shapes and parameters of HPF, the volume oscillation of the APV model and the phase shift of the oscillation with fast Fourier transform (FFT) were tested while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg/s). The phase shift between ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were obtained from simulations performed on two different arterial blood pressure waveforms and one hyperthermia waveform.

Burst pressure estimation of Alloy 690 axial cracked steam generator U-bend tubes using finite element damage analysis

  • Kim, Ji-Seok;Kim, Yun-Jae;Lee, Myeong-Woo;Jeon, Jun-Young;Kim, Jong-Sung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.666-676
    • /
    • 2021
  • This paper presents numerical estimation of burst pressures of axial cracked U-bend tubes, considering the U-bending process analysis. The validity of the FE simulations is confirmed by comparing with published experimental data. From parametric analyses, it is shown that existing EPRI burst pressure estimation equations for straight tubes can be conservatively used to estimate burst pressures of the U-bend tubes. This is due to the increase in yield strength during the U-bending process. The degree of conservatism would decrease with increasing the bend radius and with increasing the crack depth.

Numerical validation of burst pressure estimation equations for steam generator tubes with multiple axial surface cracks

  • Kim, Ji-Seok;Lee, Myeong-Woo;Kim, Yun-Jae;Kim, Jin-Weon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.579-587
    • /
    • 2019
  • This paper provides further validation of the burst pressure estimation equations for multiple axial surface cracked steam generator tubes, recently proposed by the authors based on analytical local collapse load approach against systematic FE damage analysis results of Alloy 690 tubes with twin axial surface cracks. Wide ranges of the relative crack depth and multiple crack configurations are considered. Comparison shows good agreements, giving sufficient confidence of the proposed equations.

A study on the equivalent static wind load estimation of large span roofs (대스팬 지붕구조물의 등가정적 풍하중 산정에 관한 연구)

  • Kim, Dae-Young;Kim, Ji-Young;Kim, Han-Young;Lee, Myung-Ho;Kim, Sang-Dae
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.245-251
    • /
    • 2004
  • This paper discuss the conditionally sampled actual wind pressure distributions causing peak quasi-static wind loads in the large span roofs using the wind pressures at many locations on dome models measured simultaneously in a wind tunnel. The actual extreme pressure distributions are compared itk load-response-correlation (LRC) method and the quasi-steady pressure distributions. Based on the results, the reason for the discrepancy in the LRC pressure distribution and the actual extreme pressure distribution are discussed. Futhermore, a brief discussion is made of the equivalent static wind load estimation for the large span roofs.

  • PDF

Zricaloy-4 Oxidation Kinetics in High-Pressure High-Temperature Steam and Application to Accident Analysis (고압 고온 수증기에서 지르칼로이-4 산화반응 정량화 및 사고해석에의 응용)

  • 박광헌
    • Journal of Surface Science and Engineering
    • /
    • v.35 no.6
    • /
    • pp.363-370
    • /
    • 2002
  • Empirical equations for the oxide thickness and the weight gain of Zircaloy-4 cladding during the oxidation in high temperature, high pressure steam have been developed. Firstly, the empirical equations for oxide thickness in 1 atm steam in 700~100$0^{\circ}C$ were made, then, the enhancement factor for the steam pressure effects on Zircaloy-4 cladding oxidation in high temperature steam was added. Based on the analysis of the weight fraction of dissolved oxygen in metal layer, empirical equations for the weight gain of Zircaloy-4 in high pressure, high temperature steam were developed. We compare the developed empirical equations with the Baker-Just correlation. The Baker-Just correlation can give a non-conservative estimation of oxidation of Zircaloy-4, depending on the steam pressure. These developed empirical equations can be used for the correct estimation of oxidation of Zircaloy-4 during accident analysis.

Estimation of extreme wind pressure coefficient in a zone by multivariate extreme value theory

  • Yang, Qingshan;Li, Danyu;Hui, Yi;Law, Siu-Seong
    • Wind and Structures
    • /
    • v.31 no.3
    • /
    • pp.197-207
    • /
    • 2020
  • Knowledge on the design value of extreme wind pressure coefficients (EWPC) of a specific zone of buildings is essential for the wind-resistant capacity of claddings. This paper presents a method to estimate the representative EWPC introducing the multivariate extreme value model. The spatial correlations of the extreme wind pressures at different locations can be consider through the multivariate extreme value. The moving average method is also adopted in this method, so that the measured point pressure can be converted to wind pressure of an area. The proposed method is applied to wind tunnel test results of a large flat roof building. Comparison with existing methods shows that it can give a good estimation for all target zones with different sizes.

A Study on Flow Rate Estimation Using Pressure Fluctuation Signals in Pipe (배관내 압력변동 신호를 이용한 유량 추정 방법 연구)

  • Jeong Han Lee;Dae Sic Jang;Jin Ho Park
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2023
  • In nuclear power plants, the flow rate information is a major indicator of the performance of rotating equipment such as pumps, and is a very important one required for facility operation and maintenance. To measure a flow rate, various types of methods have been developed and used. Among them, the differential pressure type using orifice and the direct doppler type using ultrasonic waves are the most commonly used. However, these flow rate measurement methods have limitations in installation, conditions and status of the measuring part, etc. To solve this problem, we have studied a new technique for measuring flow rate from scratch. In this paper, we have devised a technique to estimate the flow rate using an average moving velocity of large-scale eddy in turbulence that occurs in the piping flow field. The velocity of the large-scale eddy can be measured using the pressure fluctuation signals on the inner surface of the pipe. To estimate the flow rate, at first a cross-correlation function is applied to the two pressure fluctuation signals located at different positions in the down stream for calculating the time delay between the moving eddies. In order to validate the proposed flow rate estimation method, CFD analyses for the internal turbulence flow in pipe are conducted with a fixed flow condition, where the pressure fluctuation signals on the pipe inner surface are simulated. And then the average flow velocity of the large scale eddy is to be estimated. The estimated flow velocity is turned out to be similar to the fixed (known) flow rate.

Trajectory Estimation of Center of Plantar Foot Pressure Using Gaussian Process Regression (가우시안 프로세스 회귀를 이용한 족저압 중심 궤적 추정)

  • Choi, Yuna;Lee, Daehun;Choi, Youngjin
    • The Journal of Korea Robotics Society
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2022
  • This paper proposes a center of plantar foot pressure (CoP) trajectory estimation method based on Gaussian process regression, with the aim to show robust results regardless of the regions and numbers of FSRs of the insole sensor. This method can bring an interpolation between the measurement points inside the wearable insole sensor, and two experiments are conducted for performance evaluation. For this purpose, the input data used in the experiment are generated in three types (13 FSRs, 8 FSRs, 5 FSRs) according to the regions and numbers of FSRs. First, the estimation results of the CoP trajectory are compared using Gaussian process regression and weighted mean. As a result of each method, the estimation results of the two methods were similar in the case of 13 FSRs data. On the other hand, in the case of the 8 and 5 FSRs data, the weighted mean varies depending on the regions and numbers of FSRs, but the estimation results of Gaussian process regression showed similar results in spite of reducing the regions and numbers. Second, the estimation results of the CoP trajectory based on Gaussian process regression during several gait cycles are analyzed. In five gait cycles, the previous cycle and the current estimation results are compared, and it was confirmed that similar trajectories appeared in all. In this way, the method of estimating the CoP trajectory based on Gaussian process regression showed robust results, and stability was confirmed by yielding similar results in several gait cycles.

Suggestion of a design load equation for ice-ship impacts

  • Choi, Yun-Hyuk;Choi, Hye-Yeon;Lee, Chi-Seung;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.386-402
    • /
    • 2012
  • In this paper, a method to estimate ice loads as a function of the buttock angle of an icebreaker is presented with respect to polycrystalline freshwater ice. Ice model tests for different buttock angles and impact velocities are carried out to investigate ice pressure loads and tendencies of ice pressure loads in terms of failure modes. Experimental devices were fabricated with an idealized icebreaker bow shape, and medium-scale ice specimens were used. A dry-drop machine with a freefall system was used, and four pressure sensors were installed at the bottom to estimate ice pressure loads. An estimation equation was suggested on the basis of the test results. We analyzed the estimation equation for design ice loads of the International Association of Classification Societies (IACS) classification rules. We suggest an estimation equation considering the relation between ice load, buttock angle, and velocity by modifying the equations given in the IACS classification rules.