• 제목/요약/키워드: Pressure chamber model test

Search Result 114, Processing Time 0.044 seconds

A study on the face pressure control and slurry leakage possibility using shield TBM model test (축소 모형실험을 통한 토피조건별 이수압식 쉴드 TBM의 챔버압 및 이수분출 가능성 평가)

  • Koh, Sungyil;Shin, Hyunkang;La, You-Sung;Jung, Hyuksang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.3
    • /
    • pp.277-291
    • /
    • 2020
  • Shield TBM is a tunnelling method that has a wider range of applications in the poor ground condition compared to conventional tunnels (Drill and Blast). Currently, a 13.3 m large-diameter slurry shield TBM is preparing for construction to pass under the Han River. Shield TBM is divided into slurry and EPB shield TBM, and management items during construction are different depending on each characteristic. In this paper, the equipment type, origin, application case and trouble case were analyzed for slurry shield TBM, which is mainly constructed in soft ground. In addition, 2D and 3D model tests were conducted on the condition of soil depth for the possibility of slurry leakage into front of the equipment, with appropriate chamber pressure. Based on this paper, it proposed to provide basic and reference data for proper excavation surface pressure and chamber pressure during construction of slurry shield TBM under soft ground conditions, and proposed measures to minimize stability and environmental decline due to slurry ejection.

A lab-scale screw conveyor system for EPB shield TBM: system development and applicability assessment (토압식 쉴드 TBM 스크류 컨베이어 축소 모형 시험 장비: 장비 개발과 적용성 평가)

  • Suhyeong Lee;Hangseok Choi;Kibeom Kwon;Dongjoon Lee;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.5
    • /
    • pp.533-549
    • /
    • 2024
  • Soil conditioning is a critical process when tunneling with an earth pressure balance (EPB) shield tunnel boring machine (TBM) to enhance performance. To determine the optimal additive injection conditions, it is important to understand the rheological properties of conditioned soil, which is typically assessed using a rheometer. However, a rheometer cannot simulate the actual process of muck discharge in a TBM. Therefore, in this study, a scaled-down model of an 8-meter-class EPB shield TBM chamber and screw conveyor, reduced by a factor of 1:20, was fabricated and its applicability was evaluated through laboratory experiments. A lab-scale model experiment was conducted on artificial sandy soil using foam and polymer as additives. The experimental results confirmed that screw torque was consistent with trends observed in previous laboratory pressurized vane shear test data, establishing a positive proportional relationship between screw torque and yield stress. The muck discharge efficiency according to foam injection ratio (FIR) showed similar values overall, but decreased slightly at 60% of FIR and when the polymer was added. In addition, the pressure distribution generated along the chamber and screw conveyor was assessed in a manner similar to the actual EPB TBM. This study demonstrates that the lab-scale screw conveyor model can be used to evaluate the shear properties and muck discharge efficiency.

An Experimental Study on Design and Starting Characteristics of a Sub-scale Diffuser for Simulating High-Altitude Environment (고고도 환경 모사용 축소형 디퓨저 설계 및 시동특성 연구)

  • Lee, Yang-Suk;Jeon, Jun-Su;Ko, Young-Sung;Yang, Jae-Jun;Kim, Sun-Jin;Kim, Jung-Hoon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.5
    • /
    • pp.21-28
    • /
    • 2009
  • This experimental study was performed to find the important design parameters and the starting characteristics of a supersonic exhaust diffuser. The experimental study was carried out on a scaled down model of straight cylindrical supersonic exhaust diffuser, in order to evaluate the effects of operating fluid(air, nitrogen), the diffuser inlet area over the primary nozzle throat area($A_d/A_t$), the inlet pressure of primary nozzle, diffuser length over diffuser inner diameter($L_d/D_d$) and existence or nonexistence of diffuser divergence. The test results showed that the starting pressure increased with decrease in diameter of primary nozzle, and the measured starting pressure of the diffuser had approximately 90~98% efficiency as compared with the predicted starting pressure. Also, the diffuser was started at all case, regardless of $L_d/D_d$ (above 8.4) and diffuser divergence. The result of this study can be used as an essential database for developing a simulated high-altitude facility for real-scale model.

Effects of Underexpanded Plume in Transonic Region on Longitudinal Stability (천음속 영역에서 과소 팽창 화염이 종안정성에 미치는 영향에 관한 연구)

  • Jung, Suk-Young;Yoon, Sung-Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.118-128
    • /
    • 2004
  • Exhaust plume effects on longitudinal aerodynamics of missile were investigated by wind tunnel tests using a solid plume simulator and CFD analyses with both the solid plume and air jet plumes. Approximate plume boundary prediction technique was used to produce the outer shape of the solid plumer and chamber conditions and nozzle shapes of the air jet plumes were determined through plume modeling technique to compensate the difference in thermodynamic properties between air and real plume. From comparisons among turbulence models in case of external flow interaction with the air jet plume, Spalart-Allmaras model turned out to give accurate result and to be less grid-dependent. Effects induced by the plume were evaluated through the computations with Spalart-Allmaras turbulence model and the air jet plume to account for various ratios of chamber and ambient pressure and Reynolds number under the flight test condition.

A Study on Speed Control of Hydrostatic Transmission Using High Speed Solenoid Valve (고속전자밸브를 이용한 유압전동장치의 속도 제어에 관한 연구)

  • Park, S.H.;Lee, J.K.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.7
    • /
    • pp.148-157
    • /
    • 1995
  • This study deals with controlling the speed of Hydrostatic Transmission (HST) system throuth the control of pumping stroke of positive displacement pump using high-speed solenoid valve controlled by digital closed loop PWM method. The method which was done in this study is as follows: First, we modified original positive displacement pump and designed pumping stroke control system of HST by using the high-speed solenoid valve. Second, after experimenting static and dynamic characteristics on each signal flow, we identified system parameter of approximated model. Finally, to control the speed of HST, we controlled the angle of the swash plate of positive displacement pump by controlling the pressure in the control cylinder chamber. Test which was carried out in the laboratory shows that transient and steady state response could be improved by PID controller.

  • PDF

Computation of Plug Capacity for Open -Ended Piles Driven into Sands (모래지반에 타입된 개단말뚝의 관내토지지력 산정)

  • 백규호;이승래
    • Geotechnical Engineering
    • /
    • v.9 no.4
    • /
    • pp.7-16
    • /
    • 1993
  • Calibration chamber tests were conducted on open -ended model piles driven into dried siliceous sands with different soil conditions in order to clarify the effect of soil conditions on plug capacity, The model pile used in the test series was devised so that the bearing capacity of an open -ended pile could be measured out into three components , outside shaft resistance. plug resistance and tip resistance. Under several assumption, the value of earth pressure coefficient in the soil plug is calculated. It is gradually reduced with increase in the longitudinal distance from the pile tip. At the bottom of soil plug, it tends to decrease with increase in the penetration depth and relative density, and to increase with the increase of ambient pressure. In comparison of measured and calculated plug capacities using the one -dimensional analysis, we note that API code and one -dimensional analysis combined with P suggested by Randolph et al. and O'Neill et al. result in great underestimation of the plug capacity. Therefore, based on the test results, an empirical equation was suggested to compute the earth pressured coefficient to be used in the calculation of plug capacity using the one -dimensional analysis. and it produces proper plug capacities for all soil conditions.

  • PDF

Computational Investigation of Pintle Nozzle Flow (핀틀 노즐 유동장의 수치해석적 연구)

  • Kim, Joung-Keun;Lee, Ji-Hyung;Chang, Hong-Been
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.35-41
    • /
    • 2009
  • Both the nozzle expansion ratio and the chamber pressure are simultaneously and continuously changed according to pintle movement, resulting in a different internal flow structure and flow separation characteristics. In this paper, the pintle position effect on nozzle flow structure and separation phenomena is analyzed by experimental-aided Computational Fluid Dynamic(CFD). Among the turbulent models for RANS(Reynold Averaged Navier Stokes) in Fluent, Spalart-Allmaras model is better agreement with the nozzle wall pressure distribution attained by cold-flow test than other models. And even if a conical nozzle is used, there is a shock structure similar to cap-shock pattern mainly occurred in contoured or shaped optimized nozzle because of internal shock generated from pintle tip flow separation.

Uplift Testing and Load-transfer Characteristics of Model Drilled Shafts in Compacted Weathered Granite Soils (화강풍화토 지반에 타설된 소형 현장 타설 말뚝의 인발시험 및 하중 전이 특성)

  • 임유진;서석현
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.105-117
    • /
    • 2002
  • In the design of foundations for the super-structures such as transmission towers and oil-platforms, the foundations must be considered as a medium to resist cyclic tensile forces. In this study, the uplift capacity of the drilled shaft used as the medium resisting to this pattern of forces is investigated by performing cyclic uplift test of a small model-drilled shaft constructed in compacted granite soil in a steel chamber. In this test, the behavioral difference between a pile loaded on the top of the pile and a pile loaded at the bottom of the pile was investigated intensively. The load transfer curves obtained from the test were investigated by changing the confining pressure in the chamber. The load tests also included creep test and cyclic test. It is found from the tests that uplift capacity of the shaft loaded at the bottom is greater than that of the shaft loaded on the top of the pile. It is found also from the creep test that the pile loaded at the bottom was more stable than the shaft loaded on the top. If a pile loaded at the bottom is pre-tensioned, the pile will be most effective to the creep displacement. It is found also from the cyclic tests that apparent secant modulus obtained in a cycle of the load increases with the number of cycles.

Permanent Deformations of Piles in Sand Under Cyclic Lateral Loads (모래지반에서 반복수평하중을 받는 말뚝의 영구변형)

  • Paik, Kyu-Ho;Park, Won-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.63-73
    • /
    • 2010
  • Monopiles, used as one foundation option for offshore wind turbines, are usually subjected to great cyclic lateral loads due to wind and wave. In this study, model pile load tests were performed using calibration chamber and three model piles with different pile lengths in order to investigate the behavior of laterally cyclic loaded piles driven into sand. Model test results show that the first loading cycle generates a bigger displacement than the following ones, and the permanent displacement of piles by one loading cycle decreases with increasing the number of cycles. 1-way cyclic loading causes the permanent displacement in the same direction as cyclic loading, whereas 2-way cyclic loading causes the permanent displacement in the reverse direction of initial loading. It is also observed that the permanent displacement of piles due to cyclic lateral loads increases with decreasing relative density of soil and with increasing the magnitude of cyclic loads. However, it is insensitive to the earth pressure ratio of soil and embedded pile length. In addition, based on the model pile load test results, equations for estimation of the permanent lateral displacement and rotation angle of piles due to 1-way cyclic lateral loads are proposed.

Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle (연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구)

  • NamKoung, Hyuck-Joon;Moon, Jong-Hoon;Jang, Seock-Young;Hong, Chang-Oug;Lee, Kyoung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF