• Title/Summary/Keyword: Pressure Vessels

Search Result 815, Processing Time 0.024 seconds

Optimization Process of Type 4 Composite Pressure Vessels Using Genetic and Simulated Annealing Algorithm (유전 알고리즘 및 담금질 기법을 활용한 Type 4 복합재료 압력용기 최적화 프로세스)

  • SONG, GWINAM;KIM, HANSANG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.212-218
    • /
    • 2021
  • In this study, we conducted a design optimization of the Type 4 composite pressure vessels to enhance the pressure-resistant performance of the vessels while keeping the thickness of the composite layer. The design variables for the optimization were the stacking angles of the helical layers of the vessels to improve the performance. Since the carbon fibers are expensive material, it is desirable to reduce the use of the carbon fibers by applying an optimal design of the composite pressure vessel. The structural analysis and optimization process for the design of Type 4 composite pressure vessels were carried out using a commercial finite element analysis software, Abaqus and a plug-in for automated simulation, Isight, respectively. The optimization results confirmed the performance and safety of the optimized Type 4 composite pressure vessels was enhanced by 12.84% compared to the initial design.

A Study on the Process Design and Deformation Analysis for Pressure Vessels by Finite Element Method (유한요소법을 활용한 압력용기의 설계 및 성형해석에 관한 연구)

  • 한규택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.460-467
    • /
    • 1998
  • The investigation deals with the manufacturing process design and deformation analysis for seamless pressure vessels Axisymmetric multistage deep drawing is a complex and important sheet metal forming process in the industry. In this study the process design for large size cylindrical shells with various thickness is performed and a general guideline for forming process design of pressure vessels will be suggested. Thus in this paper for the verification of the forming process design the forming analysis of pressure vessels will be carried out by PAM-STAMP which is on the basis of finite element analysis. In this case the formability of pressure vessels is evaluated using the results of computer simulation.

  • PDF

Design and Structural Analysis of Type 4 Composite Pressure Vessel Fitted in Spare Tire Well (스패어 타이어 웰 부에 설치되는 Type 4 복합재료 압력용기 설계 및 구조해석)

  • LIM, TAE-HOON;BYUN, JONG-IK;CHO, MIN-SIK;KIM, HAN-SANG
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.6
    • /
    • pp.570-577
    • /
    • 2018
  • Composite pressure vessels made through filament winding are widely used in various fields. Numerous studies regarding composite pressure vessels have been conducted in the automotive industry to improve the space efficiency of trunks as well as the fuel efficiency. Compared with steel liquefied petroleum gas (LPG) vessels used in the conventional LPG vehicles, the use of type 4 composite pressure vessels has advantages in terms of reduction of the weight of vehicles. This study focused on development of type 4 composite pressure vessels that can be installed in the spare tire well. Those type 4 composite pressure vessels are designed with torispherical dome shapes instead of geodecis dome shapes because of the space limitation. To reduce deformation due to the stresses in the axial direction of the vessels, thereby securing the safety of the container, the reinforcing bar concept was applied. A structural analysis software, ABAQUS, confirmed the effect of the reinforcing bar on the axial deformation through the type 4 composite pressure vessel. As a result, the final winding angle of the composite layer was analyzed by applying $26^{\circ}/28^{\circ}/26^{\circ}/28^{\circ}/26^{\circ}/88^{\circ}$ The tensile stress was 939.2 MPa and the compressive stress was 249.3 MPa.

Fall Impact Analysis of Type 4 Composite Pressure Vessels Using SPH Techniques (SPH 기법을 활용한 Type 4 복합재료 압력용기 낙하 충격 해석)

  • SONG, GWINAM;KIM, HANSANG
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.3
    • /
    • pp.172-179
    • /
    • 2021
  • The drop impact analysis was carried out on Type 4 pressure containers, and the degree of damage to the falling environment was predicted and determined using smoothed particle hydrodynamics (SPH) techniques. The purpose of the design and the optimization process of the winding pattern of the pressure vessel of the composite material is to verify the safety of the container in actual use. Finally, an interpretation process that can be implemented in accordance with domestic test standards can be established to reduce the cost of testing and containers through pre-test interpretation. The research on the fall analysis of pressure vessels of composite materials was conducted using Abaqus, and optimization was conducted using ISIGHT. As a result, the safety of composite pressure vessels in the falling environment was verified.

Finite Element Analysis of PSC Reactor Containment Vessels (프리스트레스트 콘크리트 원자로 격납고의 유한요소해석)

  • 송하원;최강룡;김경단;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.377-384
    • /
    • 2002
  • In this palter, a finite element technique is applied to both reinforced concrete and prestressed concrete containment vessels to predict the ultimate pressure capacity of the vessels subjected to internal pressure due to accident. The so-called volume-control technique is utilized to control the change in volume enclosed by the cylindrical containment vessels and layered shell elements equipped with a pressure node is utilizing to model the PSC vessels. The finite element analysis is carried out to obtain both global and local failure behavior of prestressed concrete nuclear containment vessels. nalytical results are verified by comparison with experimental data.

  • PDF

Simplified Modeling of Deflagration in Vessels

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1338-1348
    • /
    • 2004
  • A simplified method that models the deflagration process occurring in closed or vented vessels is described. When combustion occurs within the spherical or cylindrical vessels, the flame moves spherically or segmentally to the vessel periphery. The volume and area of each element along the propagating flame front are calculated by using simple geometrical rules. For instabilities and turbulence resulting in enhanced burning rates, a simple analysis results in reasonable agreement with the experimental pressure transients when two burning rates (a laminar burning rate prior to the onset of instability and an enhanced burning rate) were used. Pressure reduction caused by a vent opening at predetermined pressure was modeled. Parameters examined in the modeling include ignition location, mixture concentration, vented area, and vent opening pressure. It was found that venting was effective in reducing the peak pressure experienced in vessels. The model can be expected to estimate reasonable peak pressures and flame front distances by modeling the enhanced burning rates, that is, turbulent enhancement factor.

Two-dimensional thermo-elastic analysis of FG-CNTRC cylindrical pressure vessels

  • Arefi, Mohammad;Mohammadi, Masoud;Tabatabaeian, Ali;Dimitri, Rossana;Tornabene, Francesco
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.525-536
    • /
    • 2018
  • This paper focuses on the application of the first-order shear deformation theory (FSDT) to thermo-elastic static problems of functionally graded carbon nanotubes reinforced composite (FG-CNTRC) cylindrical pressure vessels. A symmetric displacement field is considered as unknown function along the longitudinal direction, whereas a linear distribution is assumed along the thickness direction. The cylindrical pressure vessels are subjected to an inner and outer pressure under a temperature increase. Different patterns of reinforcement are applied as distribution of CNTs. The effective material properties of FG-CNTRC cylindrical pressure vessels are measured based on the rule of mixture, whereas the governing equations of the problem are here derived through the principle of virtual works. A large parametric investigation studies the effect of some significant parameters, such as the pattern and volume fraction of CNTs, on the longitudinal distribution of deformation, strain and stress components, as useful tool for practical engineering applications.

Basic Study on The Long-period Fiber Grating Pressure Sensor for applying the Vessels (선박적용을 위한 장주기 광섬유 격자 압력센서의 기초연구)

  • Sohn, Kyung-Rak;Choi, Young-Gil;Jang, Se-In;Choi, Jae-Yun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.202-203
    • /
    • 2005
  • we present a pressure sensor based on the mechanically formed long-period fiber gratings. The attenuation properties of an output power as a function of an external pressure is able to apply to the in-line fiber pressure sensors for the vessels.

  • PDF

Development of Filament Wound Composite Pressure Vessels with a Single Boss (필라멘트 와인딩법에 의한 단일 개구부 복합재료 압력용기의 개발)

  • Hwang, Byeong-Seon;Kim, Byeong-Seon;Kim, Byeong-Ha;Park, Seung-Beom;Roger, Davidson
    • 연구논문집
    • /
    • s.30
    • /
    • pp.129-135
    • /
    • 2000
  • Double boss type composite pressure bottles have been developed widely but single boss type had not because there are some difficulty in technical point. In this paper a research was performed to develop composite pressure vessel in conjunction with design, fabrication, and test. Fiber pattern and angles were decided by CADFIL software and they are [liner/$15^{\circ}$/$15^{\circ}$/$90^{\circ}$/$18^{\circ}$/$90^{\circ}$/$21^{\circ}$/$21^{\circ}$/$90^{\circ}$]. Fabrication of bottles was done by AEA's 5-axis filament winding machine. During fabrication fiber optic sensor were embedded to measure were behavior of structure at the applied internal pressure. Even though satisfied test results were not obtained, the experimental set-up of fiber optics showed the possibility for the application of filament wound vessels. However, the conventional strain and fabrication of single boss composite bottles.

  • PDF

Thermoelastic analysis of rotating FGM thick-walled cylindrical pressure vessels under bi-directional thermal loading using disk-form multilayer

  • Fatemeh Ramezani;Mohammad Zamani Nejad
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.139-151
    • /
    • 2024
  • In this research, a semi-analytical solution is presented for computing mechanical displacements and thermal stresses in rotating thick cylindrical pressure vessels made of functionally graded material (FGM). The modulus of elasticity, linear thermal expansion coefficient, and density of the cylinder are assumed to change along the axial direction as a power-law function. It is also assumed that Poisson's ratio and thermal conductivity are constant. This cylinder was subjected to non-uniform internal pressure and thermal loading. Thermal loading varies in two directions. The governing equations are derived by the first-order shear deformation theory (FSDT). Using the multilayer method, a functionally graded (FG) cylinder with variable thickness is divided into n homogenous disks, and n sets of differential equations are obtained. Applying the boundary conditions and continuity conditions between the layers, the solution of this set of equations is obtained. To the best of the researchers' knowledge, in the literature, there is no study carried out bi-directional thermoelastic analysis of clamped-clamped rotating FGM thick-walled cylindrical pressure vessels under variable pressure in the longitudinal direction.