• Title/Summary/Keyword: Pressure Vessel Steel

Search Result 224, Processing Time 0.018 seconds

A Study of the Detection for Underclad Cracks of Nuclear Pressure Vessel (원자력 압력용기의 피복하부 결함검출에 대한 고찰)

  • Park, C.S.;Ahn, H.S.;Park, J.H.;Park, K.H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.9 no.2
    • /
    • pp.42-49
    • /
    • 1989
  • It has not been performed to inspect the underclad cracking in Korea nuclear plant since there is no Code Requirements for inspection. However, underclad cracks in nuclear pressure vessels were reported firstly in 1970. The objection of this study is to be established the ultrasonic inspection techniques for underclad cracking. The ultrasonic inspection of bimetalic stainless steel weld is very difficult by high attenuation and multiple scattering at weld surface and weld/base metal interface. The various inspection methods using $70^{\circ}$ refracted longitudinal wave, 50/70 tandem transducer, $45^{\circ}\;and\;60^{\circ}$ single shear wave are compared. Experiments on limited specimens applied same condition to nuclear pressure vessels shows that $70^{\circ}$ refracted longitudinal wave method is the best one for the detection of underclad cracks. 50/70 tandem transducer using SPOT(Satellite Pulse Observation Technique) is more effective for underclad crack sizing than other sizing methods.

  • PDF

Evaluation of limit load analysis for pressure vessels - Part II: Robust methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.131-142
    • /
    • 2017
  • Determining limit load for a pressure bearing structure using elastic-plastic finite element analysis was computationally very expensive. A series of robust methods using elastic modulus adjustment techniques (EMAP) to identify the limit load directly were proposed. The numerical implementation of the robust method had the potential to be an attractive alternative to elastic-plastic finite element analysis since it was simple, and required less computational effort and computer storage space. Another attractive feature was that the method provided a go/no go criterion for the limit load, whereas the results of an elastic-plastic analysis were often difficult to interpret near the limit load since it came from human sources. To explore the performance of the method further, it was applied to a number of configurations that include two-dimensional and three-dimensional effects. In this study, limit load of cylinder with nozzle was determined by the robust methods.

Evaluation of limit load analysis for pressure vessels - Part I: Linear and nonlinear methods

  • Chen, Xiaohui;Gao, Bingjun;Wang, Xingang
    • Steel and Composite Structures
    • /
    • v.22 no.6
    • /
    • pp.1391-1415
    • /
    • 2016
  • Limit load of pressure bearing structures was reviewed in this article. By means of the finite element analysis, limit load of pressurized cylinder with nozzle was taken as an example. Stress classification method and Elastic-plastic finite element analysis combining with limit load determination methods were used to determine limit load of cylinder with nozzle. Comparison of limit load determined by different methods, the results indicated that limit load determined by linearization method was the smallest. Limit load determined by twice elastic slope criterion was the nearest than experimental results. Elastic-plastic finite element analysis had comparably computational precision, but required time consuming. And then the requirements of computer processing and storage capacity by power system became higher and higher. Most of criteria for limit load estimation included any human factors based on a certain substantive characteristics of experimental results. The reasonable criterion should be objective and operational.

A Study on the Monitoring of Pressure Vessel Safety during Hydrotest by Acoustic Emission (AE에 의한 압력용기의 안전성평가에 관한 연구)

  • Lee, J.S.;Cho, K.S.;Choi, J.M.;Chang, H.K.;Oh, S.K.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.8 no.1
    • /
    • pp.12-21
    • /
    • 1988
  • The behaviour of pressure vessel made of SS41 steel was investigated during hydrotest. AE tests were carried out for the vessels in as-manufactured, V-notched and weld-cracked state using microcomputer-based AE instrumentation. The following results were obtained: 1) In the case of source location using cylindrical program, to minimize the error of source location, the difference of max. Delta T values measured from each sensor should be kept as small as possible. 2) When crack grew, AE event rate increased continuously but AE event from the inclusions occurred intermittently, so by analyzing event rate, the source of AE could be derived. 3) From the spot welding part of supporter, many events with low energy occurred independent of Kaiser effect, which could be confirmed by analyzing energy parameter. 4) The b-value from the tensile specimen of was lower than that from normal specimen and the b-value from crack propagation was lower than that from deformation, so by analyzing peak amplitude distribution, the source mechanism could be derived from the b-value.

  • PDF

A Study of Fatigue Crack Threshold Characteristics in Pressure Vessel Steel at Low Temperature (압력용기용 강의 저온 피로크랙 하한계 특성에 관한 연구(II))

  • 박경동;김정호;정찬기;하경준
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.78-83
    • /
    • 2000
  • In this study, CT specimens were prepared from AST SA516 Gr. 70 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at 25$^{\circ}C $, -60$^{\circ}C $, -80$^{\circ}C $ and -100$^{\circ}C $ and in the range of stress ratio of 0.05, 0.3 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ${\delta} K_{th}$ in the early stage of fatigue crack growth (Region I) and stress intensity factor range $\delta $K in the stable of fatigue crack growth (Region II) were increased in proportion to descending temperature. It was assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da/dN -$\delta $K in Region II, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It was assumed that the fatigue crack growth rate da/dN is rapid in proportion to descending temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

A Study on the Integrity Evaluation Method of Subclad Crack under Pressurized Thermal Shock (가압열충격 사고시 클래스 하부균열 안전성 평가 방법에 관한 연구)

  • Koo, Bon-Geol;Kim, Jin-Su;Choi, Jae-Boong;Kim, Young-Jin
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.286-291
    • /
    • 2000
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and number of subclad cracks have been found during an in-service-inspection. Therefore assessment for subclad cracks should be made for normal operating conditions and faulted conditions such as PTS. Thus, in order to find the optimum fracture assessment procedures for subclad cracks under a pressurized thermal shock condition, in this paper, three different analyses were performed, ASME Sec. XI code analysis, an LEFM(Liner elastic fracture mechanics) analysis and an EPFM(Elastic plastic fracture mechanics) analysis. The stress intensity factor and the Maximum $RT_{NDT}$ were used for characterizing. Analysis based on ASME Sec. XI code does not completely consider the actual stress distribution of the crack surface, so the resulting Maximum allowable $RT_{NDTS}$ can be non-conservative, especially for deep cracks. LEFM analysis, which does not consider elastic-plastic behavior of the clad material, is much more non-conservative than EPFM analysis. Therefore, It is necessary to perform EPFM analysis for the assessment of subclad cracks under PTS.

  • PDF

Effect of Flaw Characterization on the Structural Integrity Evaluation Under Pressurized Thermal Shock (가압열충격 사고시 결함 이상화 방법이 구조물 건전성 평가에 미치는 영향)

  • Kim, Jin-Su;Choe, Jae-Bung;Kim, Yeong-Jin;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.275-282
    • /
    • 2001
  • The reactor pressure vessel is usually cladded with stainless steel to prevent corrosion and radiation embrittlement. Number of subclad cracks may be found during an in-service-inspection due to the presence of cladding. It is specified, in ASME Sec. XI, that a subclad crack is characterized as a surface crack when the thickness of the clad is less than 40% of the crack depth. This condition is provided to keep the crack integrity evaluation conservative. In order to refine the fracture assessment procedures for such subclad cracks under a pressurized thermal shock condition, three dimensional finite element analyses are applied for various subclad cracks existing under cladding. A total of 36 crack geometries are analyzed, and the results are compared with those for surface cracks. The resulting stress intensity factors for subclad cracks are 6 to 44% less than those for surface cracks. It is proven that the flaw characterization condition as specified in ASME Sec. XI can be overly conservative for some subclad cracks.

A Study on the Fatigue Crack Propagation Threshold Characteristic in Steel of Pressure Vessel at Low Temperature (압력용기용 강의 저온 피로크랙전파 하한계 특성에 관한 연구)

  • 박경동;박상오
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.326-331
    • /
    • 2001
  • In this study. CT specimens were prepared from ASME SA5l6 which was used for pressure vessel plates for room and low temperature service. And we got the following characteristics from fatigue crack growth test carried out in the environment of room and low temperature at $25^{\circ}C$, -3$0^{\circ}C$, -6$0^{\circ}C$, -8$0^{\circ}C$, -10$0^{\circ}C$ and -12$0^{\circ}C$ in the range of stress ratio of 0.1 by means of opening mode displacement. At the constant stress ratio, the threshold stress intensity factor range ΔKsub/th/ in the early stage of fatigue crack growth ( Region I) and stress intensity factor range ΔK in the stable of fatigue crack growth ( Region II) was increased in proportion to descend temperature. It assumed that the fatigue resistance characteristics and fracture strength at low temperature is considerable higher than that of room temperature in the early stage and stable of fatigue crack growth region. The straight line slope relation of logarithm da.dN -ΔK in RegionII, that is, the fatigue crack growth exponent m increased with descending temperature at the constant stress ratio. It assumed that the fatigue crack growth rate da/dN is rapid in proportion to descend temperature in Region II and the cryogenic-brittleness greatly affect a material with decreasing temperature.

  • PDF

The Characteristics of the Hydrogen Embrittlement for the Cr-Mo Steels in Use of Pressure Vessel (압력용기용 Cr-Mo강의 수소취화 특성)

  • Lee, Hwi-Won;Yang, Hyun-Tae;Kim, Sang-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1107-1113
    • /
    • 2002
  • This study presents the hydrogen emblittlement in the metal, which decreases the ductility and then induces the brittle fracture. The contribution deals with the effect of strain rate and notch geometry on hydrogen emblittlement of 1.25Cr-0.5Mo and 2.25Cr-1Mo steels, which are in use at high pressure vessel. Smooth and notched specimens were examined to obtain the elongation and tensile strength. For charging the hydrogen in the metal, the cathodic electrolytic method was used. In this process, current density is maintained constant. The amount of hydrogen penetrated in the specimen was detected by the hydrogen determenator(LECO RH404) with the various charging time. The distribution of hydrogen concentration penetrated in the specimen was obtained by finite element analysis. The amount of hydrogen is high in smooth specimen and tends to concentrate in the vicinity of surface. The elongation and tensile strength decreased with the passage of charging time in 1.25Cr-0.5Mo and 2.25Cr-1Mo steels. The elongation increased and tensile strength decreased as strain rate increased. As a result of this study, it is supposed that 1.25Cr-0.5Mo steel is more sensitive than 2.25Cr-lMo steel in hydrogen embrittlement. Hydrogen embrittlement susceptibility of notched specimen after hydrogen charging is more remarkable than that of smooth specimen.

Effects of Microstructural States on Magnetic Barkhausen Noise Behavior in the Weld Heat-Affected Zone of Reactor Pressure Vessel Steel (원자로압력용기강 용접열영향부의 미세조직 변화가 Magnetic Barkhausen Noise 거동에 미치는 영향)

  • Kim, Joo-Hag;Yoon, Eui-Pak;Moon, Jong-Gul;Park, Duck-Gun;Hong, Jun-Hwa
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.292-303
    • /
    • 1998
  • Recent study has demonstrated that some magnetic properties are sensitive to the microstructural state of material. The ASTM A 508 Gr. 3 reactor pressure vessel steel has various microstructural changes including martensitic and bainitic phases, and various sizes of grain and precipitates in the weld heat-affected zone (HAZ). To correlate the microstructural state with Barkhausen noise (BN), specimens were prepared through simulating various weld thermal cycles using a thermal simulator. The conventional magnetic properties, i.e. coercive force, remanence and maximum induction, did not change significantly, whereas the BN amplitude and energy during a magnetization cycle changed markedly with microstructural state. The BN increased with increasing grain and carbide sizes, and the tempered bainite structure showed higher BN parameter than tempered martensite.

  • PDF