• Title/Summary/Keyword: Pressure Vessel Piping

Search Result 73, Processing Time 0.022 seconds

The Study on Sizing of the Pressure Relief Valve for Overpressure Protection of a Reactor Pressure Vessel in Low Temperature Condition (저온 상태의 원자로 압력용기의 과압방지를 위한 압력방출밸브 용량 결정에 관한 연구)

  • Lee, Jun;Kim, Yoo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.4 no.2
    • /
    • pp.7-12
    • /
    • 2008
  • The purpose of this study is to present a methodology to estimate the capacity of the pressure relief valve which prevents overpressure of the pressure vessel in a cold state. In this methodology, the transient behavior of the flow rate through the pressure relief valve and the pressure inside the pressure vessel are considered. The result of this study shows the followings; The more the relief valve capacity is considered in excess, the more the initial relief flow rate and the initial pressure inside the pressure vessel are high and low respectively. When the relief valve capacity is determined properly, the pressure inside the pressure vessel maintains almost the same value, so the ASME code requirement will be met.

  • PDF

Nondestructive Characterization Evaluation by Time-Frequency Analysis on Pressure Vessel Piping with Corrosion (압력용기용 부식 배관의 시간-주파수 해석에 의한 비파괴적 특성 평가)

  • Nam, K.W.;Kim, J.W.;Ahn, S.H.;Park, I.D.;Lee, S.S.;Park, S.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.290-295
    • /
    • 2004
  • In this study, the pressure vessel piping with corrosion used during long term were investigated from the time-frequency analysis method. The damage of piping could be evaluated the attenuation factor by ultrasonic parameters such as center frequency and echo waveform. Based on NDE analysis by time-frequency analysis method, it should also be possible to evaluate from various damages and defects in piping members.

  • PDF

Analysis of Chemistry Factor and RTPTS Margin for Domestic Reactor Pressure Vessel Materials by using the Surveillance Data (감시시험 결과를 이용한 국내원전 압력용기 재료의 Chemistry Factor 및 RTPTS 평가여유도 분석)

  • Lee, Ho-Jin;Yoon, Ji-Hyun;Choi, Kwon-Jae;Lee, Bong-Sang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.3
    • /
    • pp.15-22
    • /
    • 2011
  • The chemistry factor and RTPTS margin for domestic reactor pressure vessel materials were analyzed by using the surveillance data which have been obtained from 8 nuclear power plants in Korea. The surveillance data have been used to assess the integrity of the pressure vessel under the pressurized thermal shock (PTS) event. The chemistry factor, which is determined by the Cu and Ni contents of vessel materials, is considered a proper tool to assess the $RT_{PTS}$. The chemistry factors, which were obtained from the surveillance data of domestic reactor pressure vessels, were investigated and compared with those of Regulatory Guide 1.99 in this study. Regressions for ${\Delta}RT_{NDT}$ were performed to expect the chemistry factor as a function of Cu and Ni, and to estimate $RT_{PTS}$ margin. The margin analysis was performed by comparing the regression graphs and standard deviations with those of Regulatory Guide 1.99. The standard deviations calculated by using the domestic surveillance data for base metal and welds are almost same as the standard deviations which are suggested on Regulatory Guide 1.99, Rev.2.

Neutron Fluence Evaluation for Reactor Pressure Vessel Using 3D Discrete Ordinates Transport Code RAPTOR-M3G (3차원 수송계산 코드(RAPTOR-M3G)를 이용한 원자로 압력용기 중성자 조사량 평가)

  • Maeng, Young Jae;Lim, Mi Joung;Kim, Byoung Chul
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.10 no.1
    • /
    • pp.107-112
    • /
    • 2014
  • The Code of Federal Regulations, Title 10, Part 50, Appendix H requires surveillance program for reactor pressure vessel(RPV) that the peak neutron fluence at the end of the design life of the vessel will exceed $1.0E+17n/cm^2$ (E>1.0MeV). 2D/1D Synthesis method based on DORT 3.1 transport calculation code has been widely used to determine fast neutron(E>1.0MeV) fluence exposure to RPV in the beltline region. RAPTOR-M3G(RApid Parallel Transport Of Radiation-Multiple 3D Geometries) performing full 3D transport calculation was developed by Westinghouse and KRIST(Korea Reactor Integrity Surveillance Technology) and applied for the evaluations of In-Vessel and Ex-Vessel neutron dosimetry. The reaction rates from measurement and calculation were compared and the results show good agreements each other.

Sensitivity Analyses for Failure Probabilities of the OPR1000 Reactor Vessel Under Pressurized Thermal Shock (가압열충격에 의한 OPR1000 원자로용기의 파손확률 민감도 해석)

  • Oh, Changsik;Jhung, Myung Jo;Choi, Youngin
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.40-49
    • /
    • 2019
  • In this paper, failure probabilities of the OPR1000 reactor vessel under pressurized thermal shock (PTS) were estimated using the probabilistic fracture mechanics code, R-PIE. Input variables of initial crack distribution, crack size, copper contents, and upper shelf toughness were selected for the sensitivity analyses. A wide range of the input data were considered. Through-wall cracking frequencies determined by the product of the vessel failure probability and the corresponding occurrence frequency of the transient were also compared to the acceptance criterion. The results showed that transient history had the most significant impact on the vessel failure probability. Moreover, conservative assumptions resulted in extremely high through-wall cracking frequencies.

Considerations of Stress Assessment Methodology for BOP Pipings of PGSFR (PGSFR BOP계통 배관 응력평가 적용방안 고찰)

  • Oh, Young Jin;Huh, Nam Su;Chang, Young Sik
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.101-106
    • /
    • 2016
  • NSSS (Nuclear Steam Supply System) and BOP (Balance of Plant) design works for PGSFR (Prototype Gen-IV Sodium Fast Reactor) have been conducted in Korea. NSSS major components, e.g. reactor vessel, steam generator and secondary sodium main pipes, are designed according to the rule of ASME boiler and pressure vessel code division 5, in which DBA (Design by Analysis) methods are used in the stress assessments. However, there is little discussions about detail rules for BOP piping design. In this paper, the detail methodologies of BOP piping stress assessment are discussed including safety systems and non-safety system pipings. It is confirmed that KEPIC MGE(ASME B31.1) and ASME BPV code division 5 HCB-3600 can be used in stress assessments of non-safety pipes and class B pipes, respectively. However, class A pipe design according to ASME BPV code division 5 HBB-3200 has many difficulties applying to PGSFR BOP design. Finally, future development plan for class A pipe stress assessment method is proposed in this paper.

Pre-Service Inspection for Reactor Vessel Penetration Nozzle (원자로 헤드 관통관 노즐 가동전 검사 수행)

  • Lee, Dong Jin;Noh, Ik Jun;Shin, Kun Chul;Kim, Hae Suck;Hong, Joo Youl;Choi, Jung Kwan
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.6 no.2
    • /
    • pp.9-15
    • /
    • 2010
  • US NRC issued rulemaking of 10CFR50.55a to perform the Perservice and Inservice inspection for Reactor Vessel Head Penetration Nozzle of US Nuclaer plant. The rulemaking was required the EPRI Demonstration to verify the NDE technique performing special Ultrasonic examination. In order to meet this requirement, the UT and ECT procedures was demonstrated and the NDE personnel were qualified by EPRI. In this paper, the NDE technique and analysis method are described the Preservice inspection for the Palo Verde #1/2/3 Replacement Reactor Vessel Head Penetration Nozzle using the qualified procedures and personnel.

  • PDF

A Preliminary Assessment on ERVC Performance Depending on Insulation Conditions (단열재 조건에 따른 원자로용기 외벽냉각 성능 예비분석)

  • Dong-Hyeon Choi;Yoon-Suk Chang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.19 no.1
    • /
    • pp.36-43
    • /
    • 2023
  • Lots of researches have been conducted on in-vessel retention (IVR) to prevent or mitigate severe accident in nuclear power plants. Various methodologies were proposed and the external reactor vessel cooling was selected as a part of promising IVR strategy. In this study, the strategy is strengthened by enhancing the natural circulation performance through the adoption of insulation in the reactor cavity. A thermal analysis was carried out based on an assumed accident scenario and its results were used as boundary conditions for subsequent seven flow analysis cases. By comparing the natural circulation performance, effects of annular gaps and insulation shapes on the mass flow rate and flow velocity were quantified. The improvement in cooling performance can be reflected in actual design via detailed assessment.

Design Characteristics Analysis for Very High Temperature Reactor Components (VHTR 초고온기기 설계특성 분석)

  • Kim, Yong Wan;Kim, Eung Seon
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.85-92
    • /
    • 2016
  • The operating temperature of VHTR components is much higher than that of conventional PWR due to high core outlet temperature of VHTR. Material requirements and technical issues of VHTR reactor components which are mainly dominated by high temperature service condition were discussed. The codification effort for high temperature material and design methodology are explained. The design class for VHTR components are classified as class A or B according to the recent ASME high temperature reactor design code. A separation of thermal boundary and pressure boundary is used for VHTR components as an elevated design solution. Key design characteristics for reactor pressure vessel, control rod, reactor internals, graphite reflector, circulator and intermediate heat exchanger were analysed. Thermo-mechanical analysis of the process heat exchanger, which was manufactured for test, is presented as an analysis example.

Development of Safety Review Guide for Periodic Safety Review of Reactor Vessel Internals (원자로내부구조물 주기적 안전성평가 심사지침 개발 배경)

  • Lee, Ki Hyoung;Park, Jeong Soon;Ko, Han Ok;Jhung, Myung Jo
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.9 no.1
    • /
    • pp.20-24
    • /
    • 2013
  • Reactor Vessel Internals(RVIs), which are installed within the reactor pressure vessel and support the fuel assembly, take responsibility for safety of reactor core. In operating Nuclear Power Plants(NPPs), the RVIs have been exposed to severe conditions such as neutron irradiation, high temperature, high pressure, and high velocity of coolant flow and have degraded by materials aging with long-term operation. Therefore, the effective aging management plan and the appropriate regulatory requirements are necessary to maintain the integrity of RVIs. The purpose of this paper is to provide a review guide for Periodic Safety Review(PSR) of RVIs in presurized water reactor. The review guide is developed based on the revised review guides and reports established from IAEA and USNRC, and the analysis results of design characteristics, aging mechanisms, and operating experiences of RVIs in domestic and international NPPs. Consequently, the developed review guide for PSR of RVIs is expected to contribute an overall strategy and standard for the PSR of RVIs.