• Title/Summary/Keyword: Pressure Vessel Design

Search Result 339, Processing Time 0.027 seconds

A LNG Pressure Vessel Design (LNG 압력용기의 설계)

  • 김정위
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.28-37
    • /
    • 2000
  • In this paper the LNG vessel of the Moss type which is capable of lifting 15,261 tons is investigated in the view point of the pressure vessel preliminary design using the finite element method. The Pressure vessel design is based on the equivalent stress levels due to the internal pressure. The finite element model of the spherical pressure vessel is configured using 4 noded quadrilateral shell element. The finite element analysis program NASTRAN and ANSYS 5.5are implemented. The design is compared with the three kinds of the boundary condition : first, where the equator of the pressure vessel is fixed, and where the top and is fixed, and, the bottom end is fixed, respectively. A comparison is presented between the results obtained by the finite element model and by the prototype production model. Additionally just below position(case 1 & case 2) of equator ring was carried out by using ANSYS 5.5. The results show that the vessel design based on the stress is acceptable at the preliminary design.

  • PDF

Optimal Thickness Design of Ellipsoidal and Tori-Spherical Pressure Vessel Domes (타원형 및 토리-구형 압력용기도옴의 두께 최적화설계)

  • 이영신;김영완;조원만
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.707-715
    • /
    • 1994
  • This study presents thickness optimization for the pressure vessel domes subject to internal pressure and axial force simultaneously. The considered typical pressure vessel domes are ellipsoidal and tori-spherical domes with skirt and nozzle part. These pressure vessel domes under loading have higher stress concentration on geometric discontinuity parts. Therefore, thickness optimization of axi-symmetric pressure vessel domes is essentially concerned on minimizing this stress concentration. The objective function is minimization of weight of pressure vessel dome. The design variable is thickness of dome and cylinder. Considered constraint is Von Mises equivalent stress. In the optimization procedure, ANSYS code is used. The equivalent and hoop stress of original shape domes are compared with those of optimal shape domes. And optimal thicknesses for pressure vessel domes are presented.

Manufacture of High-temperature High-pressure Vessel for Mixed Gas Performance Test via Optimized Design (최적화 설계를 통한 혼합가스 성능시험용 고온 고압 용기의 제작)

  • Ku, Hyoun-Kon;Ryu, Hyung-Min;Ahn, Jae-Woong;Bae, Young-Gwan;Kim, Jin-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.11
    • /
    • pp.83-88
    • /
    • 2019
  • In this study, the high-temperature high-pressure vessel was successfully manufactured, which can be used to store pressurized air and to increase the temperature for the mix performance test of high-temperature high-pressure air with coolant (e.g., water). In this research, static structure analysis and transient thermal analysis were performed using the commercial software Midas NFX 2015 R1. Based on the results, the optimized pressure vessel design was carried out. As a result of the optimized design, the minimum stress and minimum weight were found at 120 mm of the vessel thickness, and the optimized pressure vessel was verified. Finally, through manufacture and performance test (e.g., the non-destructive inspection and hydraulic pressure test), the reliability and safety were validated for the designed pressure vessel.

Man-hour Reduction with a Regulatory Review Program for a Pressure Vessel Design (관련규정 검토 프로그램 활용 시 압력용기 설계시간 단축 효과)

  • Joo, Jung-Min;Yoo, Ho-Seon
    • Plant Journal
    • /
    • v.8 no.1
    • /
    • pp.60-72
    • /
    • 2012
  • In this study to reduce the review time of the pressure vessel regulations pressure vessel legislation review program has been developed. During the course of this research program to develop the domestic construction in a real project, saving 47% of the time was found.

  • PDF

Design of a Dynamic Absorber for the Large-Size Pressure Vessel of the Petrochemical Plant (석유화학 플랜트의 대형 압력용기에 대한 동흡진기의 설계)

  • Kim, Min-Chul;Lee, Boo-Youn;Kim, Won-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.743-749
    • /
    • 2005
  • In this work, two dynamic absorbers are introduced and designed to reduce the vibration of the large-size pressure vessel of a reactor for a petrochemical plant. The vibration modes and harmonic responses of the vessel are firstly analyzed by the finite element method. On the basis of the analyzed results, two dynamic absorbers are designed by a simple design theory. Furthermore, an optimization process is executed and an optimal design of the dynamic absorber is obtained to improve performance and structural safety of the vessel. As a result, the maximum displacement and stress of the vessel is decreased about 85% and 65% respectively, the design criteria being satisfied.

  • PDF

Optimal Design of a Dynamic Absorber for the Large-size Pressure Vessel of the Petrochemical Plant (석유화학 플랜트의 대형 압력용기에 대한 동흡진기의 최적설계)

  • Kim, Min-Chul;Lee, Boo-Youn;Kim, Won-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.5 s.98
    • /
    • pp.612-619
    • /
    • 2005
  • In this work. two dynamic absorbers are introduced and designed to reduce the vibration of the large-size pressure vessel of a reactor for a petrochemical plant. The vibration modes and harmonic responses of the vessel are firstly analyzed by the finite element method. On the basis of the analyzed results, two dynamic absorbers are designed by a simple design theory. Furthermore, an optimization process is executed and an optimal design of the dynamic absorber is obtained to improve performance and structural safety of the vessel. As a result, the maximum displacement and stress of the vessel is decreased about $85\%$ and $65\%$ respectively, the design criteria being satisfied.

Study on the Design, Manufacture, and Pressure Test of a Pressure Vessel Model (내압용기 모형의 설계, 제작 및 압력시험에 관한 연구)

  • Joung, Tae-Hwan;Lee, Jae-Hwan;Lee, Chong-Moo;Hykudome, Tadahiro;Sammut, Karl;Nho, In-Sik
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.101-106
    • /
    • 2007
  • In this paper, the authors demonstrate a new idea to take the place of the real pressure vessel test, which should be carried out in a high pressure experiment unit before the real sea trial test. The idea is to make a pressure vessel model as a replica of the real pressure vessel test, which can reduce the cost of making a pressure vessel and large pressure experiment unit. The pressure vessel model was designedbased on linear-elastic, buckling equations and Finite Element Analysis. The manufactured pressure vessel model was investigated and monitored while the pressure test was being conducted. After the test, the result and the validity of the pressure vessel model as a replica of the real pressure vessel test was studied.

Finite Element Analysis of Stress Behaviour Characteristics in Gas Pressure Vessels (가스압력용기의 응력거동특성에 관한 유한요소해석)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.58-64
    • /
    • 2003
  • This paper presents design safety analysis of pressure vessels. The gas pressure and thermal loads are applied to the pressure vessel simultaneously. In this study, ASME Sec. VIII Div. 2 code was accepted for the safety design of high-pressure vessel. And this result was analyzed using a coupled thermal-mechanical FEM analysis technique. The FEM computed result shows that ASME design code may not guarantee for combined loads of high gas pressure and thermal loads. And solid pressure vessel may be safe compared to other pressure vessels with supporting rings round the cylinder body.

  • PDF

Development of Customizing Program for Finite Element Analysis of Pressure Vessel (압력 용기 유한 요소 해석 프로그램 개발)

  • Jeon, Yoon-Cheol;Kim, Tae-Woan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.654-659
    • /
    • 2003
  • PVAP (Pressure Vessel Analysis Program V1.0) was developed by adopting the finite element analysis program ANSYS V6.0, and Microsoft Visual Basic V6.0 was also utilized for the interfacing and handling of input and output data during the analysis. PVAP offers the end user the ability to design and analyze vessels in strict accordance with ASME Section VIII, Division 2. More importantly, the user is not required to make any design decisions during the input of the vessel. PVAP consists of three analysis modules for the finite element analysis of the primary components of pressure vessel such as head, shell, nozzle, and skirt. In each module, finite element analysis can be performed automatically only if the end user gives the dimension of the vessel. Furthermore, the calculated results are compared and evaluated in accordance with the criteria given in ASME Boiler and Pressure Vessel Code, Section VIII, Division 2. In particular, heat transfer analysis and consecutive thermal stress analysis for the junction between skirt and head can be carried out automatically in the skirt-tohead module. Finally, report including the above results is created automatically in Microsoft Word format.

  • PDF

Test Method to Evaluate the Fiber Material Properties of Filament Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 섬유 방향 물성 평가 기법)

  • Hwang, Tae-Kyung;Park, Jae-Beom;Kim, Hyoung-Geun
    • Composites Research
    • /
    • v.23 no.3
    • /
    • pp.37-42
    • /
    • 2010
  • The fiber material properties, elastic constant and strength, are the most important factors among the various material properties for the design of composite pressure vessel, because of it's dominant influence on the performance of composite pressure vessel. That is, the deformation and burst pressure of pressure vessel highly affected by the fiber material properties. Therefore, the establishment of test method for exact fiber material properties is a priority item to design a composite pressure vessel. However, the fiber material properties in filament wound pressure vessel is very sensitive on various processing variables (equipment, operator and environmental condition etc..) and size effect, so that it isn't possible to measure exact fiber material properties from existing test methods. The hydro-burst test with full scale pressure vessel is a best method to obtain fiber material properties, but it requires a enormous cost. Thus, this paper suggests a newly developed test method, hoop ring test, that is capable of pressure testing with ring specimens extracted from real composite pressure vessel. The fiber material properties from hoop ring test method showed good agreement with the results of hydro-burst test with full scale composite pressure vessels.