• Title/Summary/Keyword: Pressure Variations

Search Result 920, Processing Time 0.028 seconds

A Study on Correlation Between Pressure Variations and Augmentation of Heat Transfer in Acoustic Fields

  • Oh, Yool-Kwon;Yang, Ho-Dong
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.9
    • /
    • pp.1630-1639
    • /
    • 2004
  • The present paper investigated the correlation between the acoustic pressure variations and the augmentation of heat transfer in the ultrasonic induced acoustic fields. The augmentation ratios of heat transfer coefficient were experimentally measured and were compared with the profile of the pressure distribution in the acoustic fields predicted by numerical analysis. For numerical analysis, a coupled finite element-boundary element method (coupled FE-BEM) was applied. The results of the present study reveal that the acoustic pressure is higher near two ultrasonic transducers than other points where no ultrasonic transducer was installed. The augmentation trend of heat transfer is similar with the profile of the acoustic pressure distribution. In other words, as the acoustic pressure increases, the higher augmentation ratio of heat transfer is obtained. Numerical and experimental studies clearly show that the acoustic pressure variations are closely related to the augmentation of heat transfer in the acoustic fields.

Effect of Pressure Variations on Augmentation of Heat Transfer by Ultrasonic Vibrations (초음파 가진시 압력변동이 열전달 향상에 미치는 영향)

  • Yang, Ho-Dong;Oh, Yool-Kwon
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1069-1074
    • /
    • 2004
  • This study investigated the effect of pressure variations on augmentation of heat transfer when the ultrasonic waves were applied. The augmentation ratio of heat transfer was experimentally investigated and was compared with the profiles of pressure distributions calculated applying a coupled finite element-boundary element method (coupled FE-BEM). As the ultrasonic intensities increase from 70W to 340W, the velocity of the liquid paraffin is found to increase as well as kinetic energy, This physical behavior known as quasi-Eckart streaming results from acoustic pressure variations in the liquid. Especially, the higher acoustic pressure distribution near two ultrasonic transducers develops more intensive flow (quasi-Eckart streaming), destroying the flow instability. Also, the profile of acoustic pressure variation is consistent with that of augmentation of heat transfer. This mechanism is believed to increase the ratio of hear transfer coefficient.

  • PDF

Investigation of Cyclic Variations of IMEP Under Idling Operation in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.81-87
    • /
    • 2001
  • Cyclic variability limits the range of operating conditions of spark ignition engines, especially under lean and highly diluted operation conditions. The cyclic combustion variations can be characterized by pressure parameters, combustion related parameters, and flame-front related parameters. The coefficient of variation (COV) in indicated mean effective pressure (IMEP) defines the cyclic variability in indicated work per cycle.

  • PDF

Study on Factors Influencing Cyclic Variations at Idle in Spark Ignition Engine (스파크 점화기관의 공회전 시 싸이클 변동에 영향을 주는 인자 고찰)

  • D.H. Kwon;Park, Y.K.;Kim, J.M.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1249-1252
    • /
    • 2003
  • To analyse the cyclic variations in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper is to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. The burn rate analysis program was used and the burn parameters were used to determine the variations in the input parameter. In this study, the author investigated the relationship of indicated mean effective pressure, coefficient of variation of indicated mean effective pressure and burn angles, and lowest normalized value in a spark ignition engine for the cyclic variations.

  • PDF

Experimental Study of the Internal/external Pressure Variation of TTX Travelling through a Tunnel (한국형 틸팅차량의 터널 주행시 실내/외 압력변화에 대한 실험적 연구)

  • Yun, Su-Hwan;Kwak, Min-Ho;Lee, Dong-Ho;Kwon, Hyeok-Bin;Ko, Tae-Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.2
    • /
    • pp.309-314
    • /
    • 2009
  • When a train enters into a tunnel, a compression wave is generated by a front nose and a expansion wave is generated by a rear tail respectively. The interaction between pressure waves and the train makes the internal and external pressure of the train change dramatically. In this paper, we had measured the internal and external pressure variations of TTX and analyzed the pressure variations as the tunnel length. Also, the rate of internal pressure variations were investigated with the current airtight condition of TTX. In short tunnels, the internal and external pressure variation were not large because the superposition of pressure waves was not happened. In long tunnels, however, the rapid and large pressure variations were shown because of the superpositions between the same sort of pressure waves, such as expansion wave and expansion wave or compression wave and compression wave. In specific length tunnels, the pressure variation and the pressure variation rates were largely lessened because the compression wave and expansion wave were superposed.

Sea Level Variations at Kerguelen Island in the South Indian Ocean by the Satellite Data(ARGOS) and Meteorological Data(METEO)

  • Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.2
    • /
    • pp.117-133
    • /
    • 2000
  • We studied the sea level variations at Kerguelen island in the South Indian Ocean with ARGOS data and meteorological data during about 1 year(May 1993~April 1994) through using filter, spectral analysis, coherency and phase, and found characteristics for the two oceanic signal levels(detided oceanic signal level, h$_{detided}$ and seasonal oceanic level, h$_{corr.ib}$). The forms of atmospheric pressure variations are good agreed to between ARGOS data and meteorological data in the observed periods. This Kerguelen area shows the inflow of an air temperature(gain of a radiant heat) into the sea water and the stagnation of high atmospheric pressure bands in summer, and the outflow of a sea water temperature(loss of sensible and latent heat) toward the atmosphere and the stagnation of low atmospheric pressure bands in winter. The seasonal difference of sea level between summer and winter is about 1.6cm. Both the detided oceanic signal level(h$_{detided}$) variation and the inverted barometer level(h$_{ib}$) variation have a strong correlation for T>1day period bands. The characteristics of h$_{detided}$ variation are not decided by the influence of any meteorological distributions (atmospheric pressure), but the influence of other factors(bottom water temperature) for T>2days periods bands. h$_{corr.ib}$ plays a very important role of sea level variation in the observed periods (especially T>about 180days period bands).

A Study on the Five - hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • Jeong, Yang Beom;Sin, Yeong Ho;Park, Ho Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.116-116
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw and total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

A Study on the Five-hole Probe Calibration with Non-nulling Method (비영위법에 의한 5공 프로브의 교정에 관한 연구)

  • 정양범;신영호;박호동
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.48-56
    • /
    • 1996
  • This paper is concerned with a method for calibrating five-hole probes of both angle-tube and prismatic geometries to measure local total and static pressures and the magnitude and direction of the mean velocity vector. Descriptions of the calibration technique, the typical calibration data, and an accompanying discussion of the interpolation procedure are included. The flow properties are determined explicitly from measured probe pressures using calibration data. Flow angles are obtained within the deviation angle of 1.0 degree and dynamic pressures within 0.03 with 95% certainty. The variations in the calibration data due to Reynolds number are also discussed. For the range of Reynolds number employed, no effect was detected on the pitch, yaw abd total pressure coefficients. However, the static pressure coefficient showed change to cause minor variations in the magnitude of the calculated velocity vector. To account for these variations, average correction factors need to be incorporated into the static pressure coefficient.

  • PDF

Cycle-to-Cycle Variations Under Cylinder- Pressure- Based Combustion Analysis in Spark Ignition Engines

  • Han, Sung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.10
    • /
    • pp.1151-1158
    • /
    • 2000
  • Combustion analysis based on cylinder-pressure provides a mechanism through which a combustion researcher can understand the combustion process. The objective of this paper was to identify the most significant sources of cycle-to-cycle combustion variability in a spark ignition engine at idle. To analyse the cyclic variation in a test engine, the burn parameters are determined on a cycle-to-cycle basis through the analysis of the engine pressure data. The burn rate analysis program was used here and the burn parameters were used to determine the variations in the input parameter-i. e., fuel, air, and residual mass. In this study, we investigated the relationship of indicated mean effective pressure (IMEP), coefficient of variation (COV) of IMEP, burn angles, and lowest normalized value (LNV) in a spark ignition engine in a view of cyclic variations.

  • PDF

An experimental study on the flow characteristics of intake and exhaust in turbocharged diesel engine (배기 과급 디젤기관의 흡배기 유동특성에 관한 실험적 연구)

  • 배원섭
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.48-56
    • /
    • 1991
  • This paper describes the experimental investigations on the pressure variations of intake and exhaust manifold and mass flow rate through exhaust turbine of turbocharged 6-cylinder diesel engine. The turbocharger of experimental diesel engine is constructed with the radial ty pe exhaust turbine and blower driven by exhaust gases. The pressure variations were measur ed by pressure transducer at the points such as turbine inlet and outlet, compressor inlet and outlet, and inlet pipe and exhaust manifolds for normal and combined charging engines with the change of engine speed. The experimental results of this study show that the mass flow rate of exhaust turbine and the variations of pressure in intake and exhaust manifold are all increased with the increase of engine speed.

  • PDF