• Title/Summary/Keyword: Pressure Signal

Search Result 910, Processing Time 0.025 seconds

Experimental Study on the PWM Pressure Control Characteristics of 2 Way Solenoid Valve (2방향 전자밸브 PWM압력제어특성의 실험적 비교연구)

  • 정헌술;박성진;김창완
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.107-111
    • /
    • 1997
  • Pressure control is possible by pulse width modulation signal driving a simple ON/OFF 2-way valve of hydraulic servo system. But it indices pressure fluctuation due to repeated on-off action and the pressure varies according to the duty ratio and carrier frequency. So mean pressure and ripple amplitude are arranged by experimental study as the driving signal change which decides the pressure characteristics. As the result selection criteria of the major design parameters may be established and the basic strategy to suppress the unnecessary flucturion may be provided for a hydraulic pressure control system.

  • PDF

A study on monitoring for process time and process properties by measuring vibration signals transmitted to the mold during injection molding (사출성형공정에서 금형에 전달되는 진동 신호 측정을 이용한 성형 단계별 공정시간과 공정특성의 모니터링에 대한 연구)

  • Lee, Jun-han;Kim, Jong-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.8-16
    • /
    • 2020
  • In this study, the vibration signal of the mold was measured and analyzed to monitoring the process time and characteristics during injection molding. A 5 inch light guide plate mold was used to injection molding and the vibration signal was measured by MPU6050 acceleration sensor module attached the surface of fixed mold base. Conditions except for injection speed and packing pressure were set to the same value and the change of the vibration signal of the mold according to injection speed and packing pressure was analyzed. As a result, the vibration signal had a large change at three points: "Injection start", "V/P switchover", and "Packing end". The time difference between "injection start" and "V/P switchover" means the injection time in the injection molding process, and the time difference between "V/P switchover" and "Packing end" means the packing time. When the injection time and packing time obtained from the vibration signal of the mold are compared with the time recorded in the injection molding machine, the error of the injection time was 2.19±0.69% and the error of the packing time was 1.39±0.83%, which was the same level as the actual value. Additionally, the amplitude at the time of "injection start" increased as the injection speed increased. In "V/P switchover", the amplitude tended to be proportional to the pressure difference between the maximum injection pressure and the packing pressure and the amplitude at the "packing end" tended to the pressure difference between the packing pressure and the back pressure. Therefore, based on the result of this study, the injection time and packing time of each cycle can be monitored by measuring the vibration signal of the mold. Also, it was confirmed that the level and trend of process variables such as the injection speed, maximum injection pressure, and packing pressure can be evaluated as the change of the mold vibration during injection molding.

Measuring Blood Pressure Using Oscillation Signal from an Automatic Sphygmomanometer (자동혈압계의 오실레이션 신호를 이용한 혈압 측정)

  • Kim, Dong-Jun;Kim, Young-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1720-1724
    • /
    • 2012
  • This study describes an oscillometric-based blood pressure measuring algorithm by detecting turning points of oscillation signal from digitally filtered cuff signals of an automatic sphygmomanometer. The blood pressure measuring algorithm uses a characteristic ratios method from the turning points. The accurate values of the systolic/diastolic blood presures(SBP/DBP) are calculated using the peaks in the ranges of characteristic ratios. Performances of the proposed algorithm and four automatic sphygmomanometers are compared with the mercury manometer(manual type sphygmomanometer), regarding the SBP and DBP values of manual sphygmomanometer as the reference values. The performance test showed the proposed algorithm revealed the best results in errors and a statistical analysis. Therefore this algorithm can be usable in any automatic sphygmomanometers.ssure states. This may be compromising results for subject-independent sensibility evaluation using EEG signal.

A study on the microcomputer aided pressure progress measurement and combustion analysis in engine cylinder (Micro-Computer를 이용한 기관 실린더 내의 압력측정 및 연소해석에 관한 연구)

  • 김희년;김시범;하종율
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.3
    • /
    • pp.45-50
    • /
    • 1988
  • The measurement system of the pressure in engine cylinder is developed with the aids of the microcomputer, A/D converter and simple electrical circuits. The experiment is performed in 4 cycle single cylinder Gasoline engine. When data for the pressure progress is sampled, clock signal or signal from the crank angle is used as trigger. The variation of the pressure during the cycles can be well obtained experimentally. So, the informations which are necessary in the combustion analysis, i.e. expansion pressure, indicated mean effective pressure, the magnitude and time of the maximum pressure ignition time, the rate of pressure rise and heat release and combustion rates can be obtained by the calculation using experimental data. Also, the informations about the after-burning process, the existence of the detonation waves and end time of combustion can be investigated from this study.

  • PDF

Characteristic Evaluation of Pressure Mapping System for Patient Position Monitoring in Radiation Therapy

  • Kang, Seonghee;Choi, Chang Heon;Park, Jong Min;Chung, Jin-Beom;Eom, Keun-Yong;Kim, Jung-in
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.153-158
    • /
    • 2021
  • Purpose: This study evaluated the features of a pressure mapping system for patient motion monitoring in radiation therapy. Methods: The pressure mapping system includes an MS 9802 force sensing resistor (FSR) sensor with 2,304 force sensing nodes using 48 columns and 48 rows, controller, and control PC (personal computer). Radiation beam attenuation caused by pressure mapping sensor and signal perturbation by 6 and 10 mega voltage (MV) photon beam was evaluated. The maximum relative pressure value (mRPV), average relative pressure value (aRPV), the center of pressure (COP), and area of pressure distribution were obtained with/without radiation using the upper body of an anthropomorphic phantom for 30 minutes with 15 MV. Results: It was confirmed that the differences in attenuation induced by the FSR sensor for 6 and 10 MV photon beams were small. The differences in mRPV, aRPV, area of pressure distribution with/without radiation are about 0.6%, 1.2%, and 0.5%, respectively. The COP values with/without radiation were also similar. Conclusions: The characteristics of a pressure mapping system during radiation treatment were evaluated on the basis of attenuation and signal perturbation using radiation. The pressure distribution measured using the FSR sensor with little attenuation and signal perturbation by the MV photon beam would be helpful for patient motion monitoring.

Static Performance Diagnosis Based on Pressure Signal for a Flow Control Servovalve or Proportional Direction Valve (유량제어용 서보밸브와 비례방향밸브의 압력신호를 이용한 정적 성능 진단에 관한 연구)

  • Kim, S.D.;Jeon, S.H.;Kim, I.D.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.32-41
    • /
    • 2012
  • Most diagnosis methods for servo valves requires installing spool displacement sensor or flow sensor as well as pressure sensor. The measurement of flow is hard to implement and many kinds of servovalves or proportional direction valves do not have a built-in spool displacement sensor. In this study, static performances of servovalve or proportional-direction-valve are studied theoretically and a diagnosis technique, which uses only load pressure and input current signal, is assessed. An experimental setup was made based upon a personal computer and the LabVIEW graphical language. A series of diagnosis tests were performed and the analysis results showed it possible to measure the pressure gain, hysteresis and null bias in a relatively simple methodology.

Improvement of Signal Transmission Method of Ship's Engine Performance Analyzer(SEPA) using PLM (전력선 모뎀을 이용한 선박엔진 성능분석기의 신호전달방식의 개선)

  • Kim, Kun-Woo;Yang, Hyun-Suk;Lim, Hyun-Jung;Choi, Jun-Gil;Lee, Sung-Geun;Kim, Yoon-Sik
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.53-54
    • /
    • 2005
  • This paper describes that send some signal from encoder attached to crankshaft of marine-engine to measuring instrument using power line modem(PLM) and display cylinder pressure, rpm and etc. on LCD. Conventional method that sends signal along the long signal line has some inconvenience from too long signal line length caused by huge volume of ship's engine. Power line modem can have short signal line from outlets to measuring instrument. Because it use exist power line for send signals, so it have low installation cost and could have good merits in job sites. Through this experiment, pressure in cylinder, engine rpm and etc. signals through PLM are well recognized at measuring instrument.

  • PDF

Study of Optical Tomography for Measurement of Spray Characteristics at High Ambient Pressure (고압 환경에서의 분무 특성 계측을 위한 광학 토모그래피 기법 연구)

  • Cho, Seong-Ho;Im, Ji-Hyuk;Choi, Ho-Yeon;Yoon, Young-Bin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.36-44
    • /
    • 2009
  • Spray cross-section was measured by the Optical Line Patternator (OLP) and Optical Tomography at high ambient pressure. The laser line beam passed through the spray region, then Mie scattered signal and transmitted light were captured. The measured signal was processed to obtain a distribution of attenuation coefficient in spray cross-section. Beer-Lambert's law and mathematical reconstruction methods were used to reconstruct the distribution of attenuation coefficient. Spray became dense at high pressure and attenuation of scattered signal occurred seriously. OLP method, which uses Mie scattered signal, showed limit in compensating attenuation problem in dense spray region. Optical tomography reconstructed spray cross-section well, from transmission rate of light penetrating spray region.

Algorithm of Copulsation Estimation for Counterpulsation using Pressure of VAD Outlet Cannula

  • Kang Jung-Soo;Lee Jung-Joo;Jung Min-Woo;Park Yong-Doo;Sun Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.2
    • /
    • pp.78-82
    • /
    • 2006
  • The ventricular assist device(VAD) helps to reduce the overload against the patient's native heart(NH). The pulsatile VAD pumps out the ventricular blood to the aorta with pulsatile flow. If the VAD pulsates simultaneously with the NH, the ventricle of the NH could confronts abnormally elevated aortic pressure, and this could deteriorate the ventricle rather than assist to recover it. Thus counterpulsation algorithms to avoid copulsation have been adopted by many VADs, but these methods utilize electrocardiography or arterial pressure signals, which may have difficulties to acquire consistently for a long period. In this study, the copulsation estimation algorithm for the counterpulsation is developed using the VAD outlet pressure signal. The VAD outlet pressure signal is good to maintain for a long time and the sensor part could be integrated to the VAD as a built-in module. From the VAD outlet pressure signal and its pump rate information calculated with Fast Fourier Transform, pulse peaks by the VAD and the NH were extracted and the next copulsation time at which the VAD and the NH would pulsate simultaneously was estimated. This estimation algorithm was implemented by using PC MATLAB software and tested for various pump rate conditions with mock circulation system. For each condition, the copulsation time was estimated successfully. Consequently, the results showed the possibility to use the outlet cannula pressure signal in the copulsation estimation.

Pressure Monitoring System in Gastro-Intestinal Track (소화기관내의 압력 모니터링 시스템)

  • 김용인;박석호;김병규;박종오
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.11
    • /
    • pp.1089-1094
    • /
    • 2004
  • Diseases in the gastro-intestinal track are on an increasing trend. In order to diagnose a patient, the various signals of the digestive organ, such as temperature, pH, and pressure, can offer the helpful information. Among the above mentioned signals, we choose the pressure variation as a monitoring signal. The variation of a pressure signal of the gastro-intestinal track can offer the information of a digestive trouble or some clues of the diseases. In this paper, a pressure monitoring system for the digestive organs of a living pig is presented. This system concept is to transmit the measured biomedical signals from a transmitter in a living pig to wireless receiver that is positioned out of body. The integrated solution includes the following parts: (1) the swallow type pressure capsule, (2) the receiving set consisting of a receiver, decoder box, and PC. The merit of the proposed system if that the monitoring system can supply the precise and repeatable pressure in the gastro-intestinal track. In addition, the design of low power consumption enables it to keep sending reliable signals while the pressure capsule is working in the digestive organ. The subject of the study for the pressure monitoring system is in-vivo experiments for a living pig. We achieved the pressure tracings in digestive organs and verified the validity of system after several in-vivo tests using pressure monitoring system. As a result, we found each organ has its own characterized pressure fluctuation.