• Title/Summary/Keyword: Pressure Sensor Control

Search Result 323, Processing Time 0.025 seconds

An experimental study for the filling balance of the family mold (Family 금형의 충전 밸런스를 위한 실험적 연구)

  • Cha B. S.;Rhee B. O.;Park H. P.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.09a
    • /
    • pp.132-140
    • /
    • 2005
  • It is well known that the family-mold has an advantage to reduce the cost for production and mold. However, defects are frequently occurred by over packing the smaller volume cavity during molding, especially whorl the family-mold has a volumetric difference between two cavities. In this study, we confirmed the cavity-filling imbalance by the temperature and the pressure sensors, and developed a variable-runner system for the cavity-filling balance. We carried out experiments fur balancing the cavity filling in the family-mold with the variable-runner system, and confirmed a balanced cavity-filing through analyzing the temperature and pressure change in each cavity as the cross-sectional area of the runner changed. We also examined the influence of the injection-speed to the balancing-capability of the variable-runner system in the experiment.

  • PDF

Development of a Foot Pressure Distribution Measuring Device for Lower Limb Rehabilitaion

  • Choi, Junghyeon;Seo, Jaeyong;Park, Jun Mo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.18 no.1
    • /
    • pp.1-5
    • /
    • 2017
  • It is important to train lower limb muscle strength using a tilting table to recover the lower extremity function of hemiplegia patients. It is known that the foot deformity and poor posture of hemiplegia patients can reduce the effectiveness of lower limb rehabilitation training. In this study, we developed a sensor system that can measure the foot pressure distribution of the patients for the load control of the lower extremity during lower limb rehabilitation training and it can be substituted for conventional high-cost technologies.

  • PDF

Development of Wire/Wireless Communication Modules using Environmental Sensor Modules for LNG Storage Tanks (LNG 저장탱크용 환경 센서 모듈을 이용한 유무선 통신 모듈 개발)

  • Park, Byong Jin;Kim, Min Sung
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.4
    • /
    • pp.53-61
    • /
    • 2022
  • Accidents are steadily occurring due to machine defects and carelessness during LNG storage operations. In previous studies, an environmental sensor module capable of measuring pressure, temperature, gas concentration, and flow to detect danger in advance was developed and the response speed according to the amount of leaked gas was measured. This paper proposes the development of a wired and wireless communication module that transmits data measured by the environmental sensor module to embedded devices connected to wired and wireless networks of SPI, UART, and LTE. First, a data communication module capable of interworking with an environmental sensor is designed. Design a protocol between devices in the Local Control Part and wired and wireless protocols in the Local Control Part and Remote Control Part. Ethernet, WiFi, and LTE communication modules were designed, and UART and SPI channels that can be linked with embedded controllers were designed. As a result, it was confirmed through a UI (User Interface) that each embedded device transmits data measured by the environmental sensor module while simultaneously communicating on a wired and wireless basis.

Active Control of Flow Noise Sources in Turbulent Boundary Layer on a Flat-Plate Using Piezoelectric Bimorph Film

  • Song, Woo-Seog;Lee, Seung-Bae;Shin, Dong-Shin;Na, Yang
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1993-2001
    • /
    • 2006
  • The piezoelectric bimorph film, which, as an actuator, can generate more effective displacement than the usual PVDF film, is used to control the turbulent boundary-layer flow. The change of wall pressures inside the turbulent boundary layer is observed by using the multi-channel microphone array flush-mounted on the surface when actuation at the non-dimensional frequency $f_b^+$:=0.008 and 0.028 is applied to the turbulent boundary layer. The wall pressure characteristics by the actuation to produce local displacement are more dominantly influenced by the size of the actuator module than the actuation frequency. The movement of large-scale turbulent structures to the upper layer is found to be the main mechanism of the reduction in the wall- pressure energy spectrum when the 700$700{\nu}/u_{\tau}$-long bimorph film is periodically actuated at the non- dimensional frequency $f_b^+$:=0.008 and 0.028. The biomorph actuator is triggered with the time delay for the active forcing at a single frequency when a 1/8' pressure-type, pin-holed microphone sensor detects the large-amplitude pressure event by the turbulent spot. The wall-pressure energy in the late-transitional boundary layer is partially reduced near the convection wavenumber by the open-loop control based on the large amplitude event.

A Smart Sensor System with a Programmable Temperature Compensation Technique (프로그래머블한 온도 보상 기법의 스마트 센서 시스템)

  • Kim, Ju-Hwan;Kang, Yu-Ri;Lee, Woo-Kwan;Kim, Soo-Won
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.63-70
    • /
    • 2008
  • In this paper, a smart sensor system for the MEMS pressure sensor was developed. A compensation algorithm and programmable calibration circuits were presented to eliminate errors caused by temperature drift of piezoresistive pressure sensors in itself. This system consisted of signal conditioning, calibration, temperature detection, microprocessor, and communication parts and these were integrated into a SOC. A RS-232 interface was employed for monitoring and control of a smart sensor system. The area of fabricated IC is $4.38{\times}3.78\;mm^2$ and a $0.35{\mu}m$ high voltage CMOS process was used. Compensation error for temperature drift of 50 KPa pressure sensors was measured into ${\pm}0.48%$ in the range of $-40^{\circ}C{\sim}150^{\circ}C$. Total power consumption was 30.5 mW.

Pressure Control of Hydraulic Pump using SR Drive with Pressure Predict and Direct Torque Control Method (압력예측기법과 직접순시토크제어기법을 통한 유압펌프용 SRM의 압력제어구동)

  • Lee, Dong-Hee;Seok, Seung-Hun;Liang, Jianing;Ahn, Jin-Woo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.171-178
    • /
    • 2008
  • Pressure control of hydraulic pump using SRM with pressure predictor and direct torque control method is presented in this paper. Nowadays, high efficiency and high performance motor drive is much interested in hydraulic pump system. But the hydraulic pump system has an inherent defect that its dynamic behavior causes by interaction between the sensor and hydraulic load. It will make low performance of whole system, even unstable and oscillatory. Proposed system integrates pressure predictor and direct instantaneous torque control (DITC). The pressure predictor includes Smith predictor, which is easy to improve unstable or long oscillation in traditional negative feedback control and popular PID control architectures. And DITC method can reduce inherent torque ripple of SRM, and develop smooth torque to load, which can increase stability and improve the torque response of SR drive. So high dynamic performance and stabilization can achieved proposed hydraulic system. At last, the proposed hydraulic system is verified by simulation and experimental results.

Study on Degradation of A/F Sensor (A/F 센서의 열화해석)

  • 권창순;이정호
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.101-105
    • /
    • 1994
  • A/F sensor with a sensing and a pumping element, which is made of YSZ(yttria stabilized zirconia) sheets, can be used for the combustion control of lean burn engine. A/F sensor can detect the oxygen partial pressure in more wide range than the other oxygen sensors, such as the limiting current type oxygen sensor and λ-sensor. However this sensor has the disadvantage that the characteristics has been degraded rapidly due to the physical or electrochemical reasons. The blackening phenomenon is known as one of the degradations caused by high voltage biased for oxygen pumping. In this paper, we have studied to analyze the blackening phenomenon by comparing two characteristics between before and after blackening in impedance spectroscopy, and discussed the blackening mechanism.

Development of Artificial Lateral Line Sensor for Flow Velocity and Angle Measurements (유속 및 각도 측정을 위한 인공 옆줄 센서 개발)

  • Kim, Jinhyun
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.30-35
    • /
    • 2021
  • To operate an underwater robot in an environment with fluid flow, it is necessary to recognize the speed and direction of the fluid and implement motion control based on these characteristics. Fish have a lateral line that performs this function. In this study, to develop an artificial lateral line sensor that mimics a fish, we developed a method to measure the flow speed and the incident angle of the fluid using a pressure sensor. Several experiments were conducted, and based on the results, the tendency according to the change in the flow speed and the incident angle of the fluid was confirmed. It is believed that additional research can aid in the development of an artificial lateral line sensor.

TWO TYPES OF ACTIVE NOISE CONTROL SYSTEM USING MFB LOUDSPEAKER

  • Nishimura, Yoshitaka;Shimada, Yasuyuki;Usagawa, Tsuyoshi;Ebata, Masanao
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1994.06a
    • /
    • pp.764-769
    • /
    • 1994
  • The impedance of an electro-acoustic transducer can be controlled by motional feedback, and the noise in a duct can be reduced actively by adjusting the impedance using an additional sound. In this paper, two approaches for active noise control using motional feedback (MFB) loudspeaker are described. First configuration uses an external sensor to pickup of source directly. In this configuration, the adaptation of controller is necessary to compensate the change of transfer function from noise source to control poing. The second configuration uses a new adaptive algorithm specialized for peridic noise. Because this configuration does not require any reference input and the error sensor couples very tightly with control loudspeaker, this MFB system itself is independent of the duct condition. No microphone are required in both configurations, so that a more reliable and stable active control system can be realized under severe conditions such as high pressure, high temperature, dust, flow and so on.

  • PDF

Combustion Characteristics Using a S.I. Optically Acessible Engine with SCV (SCV를 장착학 가솔린 가시화엔진에서의 연소특성)

  • 정구섭;김형준;전충환;장영준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2001
  • This study describes the combustion characteristics under various condition of air excess ratio and ignition timing in a 2-valve gasoline optically accessible engine with swirl control valve(SCV). It adapted three different types of SCA(open ration 72.5%, 78%, 89%) to strengthen a swirl flow. Pressure data were acquired using pressure sensor to investigate the effect of swirl flow on combustion, and from these pressure data, IMEP(indicated mean effective pressure) and MFB(mass fraction burnt)were calculated to explain burn rate and flame speed. From acquired flame images, inspected the flame propagation direction, flame area, and flame centroid, Flame propagation direction was shown different tendency between with/without SCV, and flame area with SCV was faster and larger than that of conventional engine. Finally, the representative flame image at each crank angle were acquired by PDF method to verify flame growth process. It is found that strengthened swirl flow is more beneficial for faster and stable combustion.

  • PDF