• 제목/요약/키워드: Pressure Sensitivity

검색결과 935건 처리시간 0.022초

Braden 욕창위험사정도구의 예측 타당도 메타분석 (Predictive Validity of the Braden Scale for Pressure Ulcer Risk: A Meta-analysis)

  • 박성희;박유선
    • 대한간호학회지
    • /
    • 제44권6호
    • /
    • pp.595-607
    • /
    • 2014
  • Purpose: The Braden Scale is one of the most intensively studied risk assessment scales used in identifying the risk of developing pressure sore. However, not all studies show that the predictive validity of this scale is sufficient. The purpose of this study was to evaluate the Braden Scale for predicting pressure ulcer development. Methods: Articles published 1946 and 2013 from periodicals indexed in Ovid Medline, Embase, CINAHL, KoreaMed, NDSL and other databases were selected, using the following keywords: 'pressure ulcer'. The QUADAS-II was applied to assess the internal validity of the diagnostic studies. Selected studies were analyzed using meta-analysis with MetaDisc 1.4. Results: Thirty-eight diagnostic studies with high methodological quality, involving 17,934 patients, were included. Results of the meta-analysis showed that the pooled sensitivity and specificity of the Braden Scale were 0.74 (95% CI: 0.72-0.76), 0.75 (95% CI: 0.74-0.76) respectively. However the predictive validity of the Braden Scale has limitation because there was high heterogeneity between studies. Conclusion: The Braden Scale's predictive validity of risk for pressure ulcer is interpreted as at a moderate level. However there is a limitation to the interpretation of the results, because of high heterogeneity among the studies.

복강내압 측정을 위한 초소형 카데터 시스템 (Micro-cathter System for Measurement of Intra-abdominal Pressure)

  • 서호영;나승대;김명남
    • 한국멀티미디어학회논문지
    • /
    • 제20권8호
    • /
    • pp.1430-1438
    • /
    • 2017
  • Recently, interest that intra-abdominal pressure has been increased as change of pathophysiology to critical patients. The intra-abdominal pressure is measured by cystometry what can be available for non-inclusively. However, conventional methods have some problems such as low SNR, weakness of environment temperature, and unsuitable size of sensor. In this paper, a new subminiature pressure sensor module and sensing system are proposed using a sensor of semiconductor type and FPCB. The module is more stable, flexible, and smaller than the conventional catheter. The performance of the developed module is evaluated by various quantitative analysis indexes. The proposed sensor has the high sensitivity and suitable size for measurement of cystometry more than the conventional method. In order to prove efficiency between conventional and proposed method, proposed method compared for sensitivity, fixable, and size. The proposed method will be help measurement of intra-abdominal pressure of patients due to high accuracy and comfortableness.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

커먼레일용 연료분사 인젝터의 설계변수에 대한 민감도 분석 (Sensitivity Analysis on Design Parameters of the Fuel Injector for CRDI Engines)

  • 장주섭;윤영환
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.107-114
    • /
    • 2009
  • A Common-Rail Direct Injection (CRDI) system for high speed diesel engines was developed to meet reductions of noise and vibration, emission regulations. High pressure in the common rail with electric control allows the fuel quantity and injection timing to be optimized and controlled throughout a wide range of engine velocity and load conditions. In this study, CRDI system analysis model which includes fuel and mechanical systems was developed using commercial software, AMESim in order to predict characteristics for various fuel injection components. The parameter sensitivity analysis such as throttle size, injection rate, plunger displacement, supply pressure of fuel injection for system design are carried out.

도로교통소음의 주파수에 따른 불쾌도 민감도 연구 (Study of the Annoyance Sensitivity for the Frequency Band of Road Traffic Noise)

  • 조경숙;황대선;조연;허덕재
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.398-404
    • /
    • 2007
  • In this study, the sensitivity of annoyance was investigated by the subjective jury test for the variations of the frequency components along with various sound pressure levels of sixteen environmental noise sources. Annoyance was, also, evaluated for the road traffic noises. Sound pressure levels were $54{\sim}84\;dB$ which individually divided frequency components with eight bands of equally three bark bands. The results show that vehicle traffic noise is recognized as the most serious environment noise source. The sensitivity of human perception of annoyance in frequency bands is quite different from A-weighting curve. The annoyance found out to be more sensitive in high frequency region and reached its maximum in 3.4 kHz.

가압열충격에 의한 OPR1000 원자로용기의 파손확률 민감도 해석 (Sensitivity Analyses for Failure Probabilities of the OPR1000 Reactor Vessel Under Pressurized Thermal Shock)

  • 오창식;정명조;최영인
    • 한국압력기기공학회 논문집
    • /
    • 제15권2호
    • /
    • pp.40-49
    • /
    • 2019
  • In this paper, failure probabilities of the OPR1000 reactor vessel under pressurized thermal shock (PTS) were estimated using the probabilistic fracture mechanics code, R-PIE. Input variables of initial crack distribution, crack size, copper contents, and upper shelf toughness were selected for the sensitivity analyses. A wide range of the input data were considered. Through-wall cracking frequencies determined by the product of the vessel failure probability and the corresponding occurrence frequency of the transient were also compared to the acceptance criterion. The results showed that transient history had the most significant impact on the vessel failure probability. Moreover, conservative assumptions resulted in extremely high through-wall cracking frequencies.

일체형 순수유압식 브레이커의 민감도해석에 의한 성능 향상 (Performance Improvement of an Integrated-type Fully-Hydraulic Breaker by Sensitivity Analysis)

  • 최석;장효환
    • 유공압시스템학회논문집
    • /
    • 제6권1호
    • /
    • pp.17-24
    • /
    • 2009
  • The performance improvement of a small-size integrated-type fully hydraulic breaker is studied in this paper. Mathematical modeling of the breaker is established and verified by experiment. Through sensitivity analysis using AMESim, the key design parameters are selected and nearly optimized to maximize the impact energy as well as to improve the dynamic characteristics such as the piston upper chamber pressure, piston and valve displacements. As a result, the impact energy, blows per minute(bpm) and output power are increased by 52.9%, 1%, and 55.6%, respectively compared with the current design. The dynamic characteristics of the piston upper chamber pressure, piston and valve displacements are also improved by the design change.

  • PDF

ASME BPVC Section XI Appendix L의 결함허용평가에 따른 허용운전주기 민감도 분석 (Sensitivity Analysis for Allowable Operating Period Based on the Flaw Tolerance Evaluation of ASME BPVC Section XI Appendix L)

  • 오창식;조두호;정명조
    • 한국압력기기공학회 논문집
    • /
    • 제17권2호
    • /
    • pp.126-136
    • /
    • 2021
  • During operation of nuclear power plants, the fatigue assessment should be conducted repeatedly, considering changes of operating environments. For the case that cumulative usage factors (CUFs) may exceed the acceptance limit, flaw tolerance evaluation can be an alternative method to meet the regulatory requirements. In this respect, this paper analyzes the effects of the input variables for flaw tolerance evaluation based on ASME BPVC Section XI Appendix L. The reference analysis is performed for the example problem in NUREG/CR-6934. Then effects of the crack orientation, stress intensity factor solutions, thermal stress profiles, fatigue stress decomposition and fatigue crack growth curves are considered for the sensitivity analysis. The results show that the stress analysis considering the actual environment plays a crucial role in flaw tolerance evaluation.

단일 채널 DPF의 PM 포집 모델링 및 모델 파라미터의 민감도 해석 (Rigorous Modeling of Single Channel DPF Filtration and Sensitivity Analysis of Important Model Parameters)

  • 정승채;박종선;윤웅섭
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.127-136
    • /
    • 2006
  • Prediction of diesel particulate filtration is typically made by virtue of modeling of particulate matter(PM) collection. The model is closed with filtration parameters reflecting all small scale phenomena associated with PM trapping, and these parameters are to be traced back by inversely analyzing large-scale empirical data-the pressure drop histories. Included are soot cake permeability, soot cake density, soot density in the porous filter wall, and percolation constant. In the present study, a series of single channel DPF experiment is conducted, pressure histories are inversely analyzed, and the essential filtration parameters are deducted by DPF filtration model formulated with non-linear description of soot cake regression. Sensitivity analyses of model parameters are also made. Results showed that filtration transients are significantly altered by the extent of percolation constant, and the soot density in the porous filter wall is controlling the filtration qualities in deep-bed filtration regime. In addition, effect of soot particle size on filtration quality is distinct in a period of soot cake regime.

Estimation of baroreflex sensitivity using pulse arrival time rather than systolic blood pressure measurement

  • Lee, Jong-Shill;Chee, Young-Joon
    • 대한의용생체공학회:의공학회지
    • /
    • 제31권1호
    • /
    • pp.14-19
    • /
    • 2010
  • Baroreflex sensitivity (BRS) is a parameter of the cardiovascular system that is reflected in changes in pulse interval (PD and systolic blood pressure (SBP). BRS contains information about how the autonomic nervous system regulates hemodynamic homeostasis. Normally the beat-to-beat SBP measurement and the pulse interval measured from the electrocardiogram (ECG) are required to estimate the BRS. We investigated the possibility of measuring BRS in the absence of a beat-to-beat SBP measurement device. Pulse arrival time (PAT), defined as the time between the R-peak of the ECG and a single characteristic point on the pulse wave recorded from any arterial location was measured by photoplethysmography. By comparing the BRS obtained from conventional measurements with our method during controlled breathing, we confirmed again that PAT and SBP are closely correlated, with a correlation coefficient of -0.82 to -0.95. The coherence between SBP and PI at a respiration frequency of 0.07-0.12 Hz was similar to the coherence between PAT and PI. Although the ranges and units of measurement are different (ms/mmHg vs. ms/ms) for BRS measured conventionally and by our method, the correlation is very strong. Following further investigation under various conditions, BRS can be reliably estimated without the inconvenient and expensive beat-to-beat SBP measurement.