• Title/Summary/Keyword: Pressure Regulator

Search Result 147, Processing Time 0.028 seconds

Numerical Study on Reduction in Frictional Loss for a Sandwitch Type of Pressure Regulator (정압기의 유체력 손실 저감에 대한 수치해석적 연구)

  • Seo, Dong-Kyun;Lee, Jung-Hoon;Hwang, Jung-Ho;Kim, Kwang-Soo;Kim, Kang-Dae;Kim, Dong-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.2
    • /
    • pp.47-52
    • /
    • 2010
  • The development of energy saving system with pressure regulator has recently been received interests. Since the internal geometry in the pressure regulator is small and complex, the frictional loss in it is critical. In this study, the pressure loss with tip size, tip position, and mass flow was investigated using numerical approaches(CFD). The aimed reduction in pressure were achieved as the ratio of t/T was more than 0.8. In addition, there was no effect of the tip position.

Electro-pneumatic regulator using multilayer PZT actuator (적층형 압전액추에이터 방식 전-공 레귤레이터)

  • Yun, So-Nam;Kim, Chan-Yong;Park, Jung-Ho;Youn, Dong-Won
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.979-984
    • /
    • 2007
  • This paper presents a new control mechanism for the proportional pressure control which is accomplished by electro-pneumatic regulator using two PZT actuators. The electro-pneumatic regulator of this study is 2-stage type and consists of two piezoelectric actuators, a controller and a main poppet valve. The piezoelectric actuators are multilayer bender type and are controlled by digital signal. Proportional pressure control technique is very important because that can derive improvement of product quality and driving ability in the pneumatic system. Solenoid actuator method for pressure control is widely used but this actuator has a high power consumption characteristics. So new actuator is required for the energy saving. In this study, PZT actuator for the pressure control was fabricated and experimented instead of the conventional type solenoid actuator. Experiments for the new control mechanism of the elector-pneumatic regulator were operated under the input condition of 0.4[MPa] and it was confirmed that this mechanism has a good control characteristics to the response sensitivity and hysteresis.

  • PDF

A Study on Performance Characteristics with the Control System of CNG Regulator (CNG 레귤레이터의 제어 방식에 따른 성능특성 연구)

  • Seo, Ji-Won;Yang, Jeong-Jik;Kim, Jin-Ho;Lim, Jong-Wan
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.3
    • /
    • pp.33-38
    • /
    • 2017
  • The domestic vehicles remodeling the "CNG Bi-fuel Kit" are mostly in operation with installing the mechanical regulator applying the Diaphragm. However, due to the material characteristics of Diaphragm and characteristics of mechanical pressure control method, various problems are happening. This study tries to deduce the improvement plan through the checking of performance characteristics according to the pressure control method of CNG regulator and progress of comparative analysis. According to the test result, the decompression method applying the Diaphragm has advantage compared to the method applying the Piston. Furthermore, it was confirmed that through the electronic pressure control, it is possible to improve the general performance of the regulator.

A Study on Modeling of the Pneumatic Part in a Gas Blow-Down System Including Pressure Regulator and Pipe-Line Characteristics (압력조절밸브와 배관 특성을 포함한 유도무기용 기체 블로우다운 시스템의 공압부 모델링에 관한 연구)

  • Park, Youngwoo
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.32-39
    • /
    • 2017
  • In this study, a mathematical model of the pneumatic part in a gas blow-down system is proposed. The mathematical model consists of four major parts: pressure vessel, reservoir, pressure regulator and pipe-line. To ensure accuracy in long-time simulations, heat transfer between gas and pressure vessel is considered. The model is validated by comparing simulation results with experimental data. Experiments are conducted on the ground, where free convection can be assumed. Simulation results indicate the proposed model can accurately describe behavior of a gas blow-down system. Therefore, it may be used for design and analysis of similar systems with a slight modification.

Real-Time Pressure-Measuring System for Evaluating the Depth of Pulse (맥진 깊이 판단을 위한 실시간 압력 측정기)

  • Cho, Jong Ho;Kim, Dae Bok;Kim, Gi Wang
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.3
    • /
    • pp.313-317
    • /
    • 2013
  • In order to standardize the pressure/depth against radial artery, the externally-applied-pressure measuring system was fabricated and evaluated. Based on the resistance-variable characteristic of the very thin($10{\mu}m$) film conductive tape along the pressure of a tip of a examiner's hand, this system was designed. The change of the pressure was processed through voltage regulator and Matlab S/W, then showed on computer monitor. The signal output through voltage regulator, and Matlab S/W was evaluated on various conditions. The evaluation was executed on these cases; an examiner slowly increases and decreases the pressure, rapidly increases and decreases the pressure, sequentially increases and decreases the pressure, sustains the pressure, micro-changes the pressure. As a pulse examiner varies the pressure on the radial artery of the examinee, the system's real-time output consistently varies according to the pressure. From the results, it is concluded that this system consistently shows the pressure of the tip of a examiner's hand in real time without interrupting the evaluation of the radial artery pulse. Therefore this system is expected to standardize the value of the pressure/depth externally applied by an examiner.

A Study on Pressure Control of Pneumatic Regulator using Modified PWM Algorithm (개량된 PWM 알고리즘을 이용한 공압 레귤레이터의 압력제어에 관한 연구)

  • Kim HyoungSeog;Ahn KyoungKwan;Lee ByungRyong;Yun SoNam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.8 s.173
    • /
    • pp.64-70
    • /
    • 2005
  • The development of an accurate and energy saving pneumatic regulator that may be applied to a variety of practical pressure control applications is described in this paper. A novel modified pulse width modulation(MPWM) valve pulsing algorithm allows the pneumatic regulator to become energy saying system. A comparison between the system response of conventional PWM algorithm and that of the modified PWM(MPWM) algorithm shows that control performance is almost the same, but energy saving is greatly improved by adopting this new MPWM algorithm. The effectiveness of the proposed control algorithm are demonstrated through experiments with various reference trajectories.

On Characteristics of Regulator System in Hydraulic Piston Pump (유압 피스톤 펌프 레귤레이터 시스템 특성 연구)

  • 여명구;김종기;정재연
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.266-272
    • /
    • 2000
  • The importance of variable displacement piston pump is recently increasing in industrial applications, as it is widely used for raising the energy level of the fluid in hydraulic system. The regulator is the device that controls the pump output flow depending on the machine load and engine speed, and that regulates the discharge flow of the piston pump by controlling the swivel angel. This work deals with constant power control of a regulator system in bent-axis type piston pump. In order to use engine power effectively, it is important to keep the horsepower from the engine to the pump constant. Therefore, optimum power usage is obtained by accurately following the power hyperbola. First, the governing equations of the regulator are derived, and analysis is performed by numerical simulation in which significant parameters of regulator are identified. Also, we designed and manufactured the prototype of the constant power control regulator for experiments. The experimental results show the responsibility and pressure-flowrate characteristics and these are compared with the theoretical analysis. As the result, it is confirmed that the characteristics of the designed regulator correspond to the numerical simulation.

  • PDF

Small Hydrogen Regulator for Mobile Fuel Cells (모바일 연료전지용 초소형 수소 레귤레이터)

  • Kim, Hyung-Jin;Seo, Young-Ho;Kim, Byeong-Hee
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.129-132
    • /
    • 2011
  • This paper presents small hydrogen regulator for the mobile fuel cell. Mobile fuel cell is generally classified into open-end type and dead-end type. In the open-end type, flow rate of hydrogen is constantly controlled, while pressure of hydrogen is constantly maintained in the dead-end type. Considering the efficiency and stability of the fuel usage, dead-end type is more suitable with mobile fuel cell. Mobile fuel cell operated by dead-end mode requires hydrogen regulator which controls the hydrogen pressure from 0.1bar to 0.5bar within 3% error. In this paper, small hydrogen regulator (volume of 2.6cc) was fabricated by stainless steel. Regulation characteristics was experimentally evaluated.

Reliability Design Using FMEA for Pressure Control Regulator of Aircraft Fuel System (항공기용 연료계통 압력조절밸브의 FMEA를 적용한 신뢰성 설계)

  • Bae, Bo-Young;Lee, Jae-Woo;Byun, Yung-Hwan
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.17 no.1
    • /
    • pp.24-28
    • /
    • 2009
  • The reliability assessment is performed for Pressure Control Regulator of Aircraft Fuel System using reliability procedure which consists of the reliability analysis and the Failure Modes and Effects Analysis(FMEA). The target reliability as MTBF(Mean Time Between Failure) is set to 5000hr. During the reliability analysis process, the system is categorized by Work Breakdown Structure(WBS) up to level 3, and a reliability structure is defined by schematics of the system. Since the components and parts that have been collected through EPRD/NPRD. The predicted reliability to meet mission requirements and operating conditions is estimated as 4375.9hr. To accomplish the target reliability, the components and parts with high RPN have been identified and changed by analyzing the potential failure modes and effects. By changing the configuration design of components and parts with high-risk, the design is satisfied target reliability.

  • PDF

THE CRYOGENIC REGULATOR DESIGN FOR LIQUID PROPULSION SYSTEM

  • Kil Gyoung-sub;Lee Joong-Youp;Na Han-Bee;Kim Byung-Hun;Chung Young-Gaph
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.10b
    • /
    • pp.227-230
    • /
    • 2004
  • The regulator that was designed for space use must be operating on the severe circumstance. For example, operating temperature is below 90K and operating pressure is 20.7 MPa. The design of regulator for liquid propulsion system was accomplished and dynamic characteristic was analyzed successfully.

  • PDF