• Title/Summary/Keyword: Pressure Regulator

Search Result 148, Processing Time 0.024 seconds

Design of Dual Pressure Regulator (이중압력 조절기 설계)

  • Kim, Dong-Soo;Kim, Kang-Dae;Kim, Myoung-Sub
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1226-1229
    • /
    • 2008
  • In this paper, we designed sandwich type pressure regulator for air pressure control system. As a result of research, we obtained several important conclusions. First, we decided theory of poppet valve and relief valve which are used in sandwich type pressure regulator, and then designed prototype of pressure regulator. Second, we organized circuit diagram of dual pressure regulator of air pressure control system.

  • PDF

A Micro Passive Gas Pressure Regulator using Pressure Balance Mechanism (압력평형메커니즘을 이용한 초소형 수동형 기체 압력조정기)

  • Lee, Ki-Jung;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.138-143
    • /
    • 2010
  • This paper presents the analysis, the fabrication and the test results of a micro passive gas pressure regulator to keep the outlet pressure costant even for a widely-varying inlet pressure. This device is to regulate the outlet pressure according to the applied reference pressure based on the pressure balancing mechanism of the structure including a membrane and a valve. This regulator consists of four layers; a bulk-micromachined silicon substrate, a sandblasted glass substrate, a PDMS valve seat layer and a glass valve layer. The device size is $10\times13\times1.7 mm3$. The device was fabricated by micromachining. The characteristic of the device was analyzed and tested. The characteristic of the fabricated pressure regulator is similar to that obtained from the analysis. The pressure regulator of this paper is feasible for portable systems and miniature drug delivery systems.

A Study About Critical Flow Characteristics and the Pipeline Network Modeling of a Pressure Regulator (I) - The Influence of a Pressure Ratio - (정압기의 임계유동 특성과 배관망해석 모델링에 관한 연구 (I) - 압력비 영향 -)

  • Shin Chang Hoon;Ha Jong Man;Lee Cheol Gu;Her Jae Young;Im Ji Hyun;Joo Won Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1291-1298
    • /
    • 2005
  • Since the interior shape of a pressure regulator is complex and the change of fluid resistance at each operation condition is rapid and big, the pressure regulator can become the major factor that causes big loss in pipelines. So the suitable pressure regulator modeling by each operation condition is important to obtain reliable results especially in small scale pipeline network analysis. And in order to prevent the condensation and freezing problems, it is needed to confirm both whether temperature recovery is achieved after passing by the pressure regulator's narrow neck and how much amount of low temperature area that can cause condensate accumulation is distributed by various PCV models at every inlet-outlet pressure ratio. In this research, the numerical model resembling P company pressure regulator that is used widely for high pressure range in commercial, is adopted as the base model of CFD analysis to investigate pressure regulator's flow characteristics at each pressure ratio. Additionally it is also introduced to examine pressure regulator's critical flow characteristics and possibility of condensation or freezing at each pressure ratio. Furthermore, the comparison between the results of CFD analysis and the results of analytic solution obtained by compressible fluid-dynamics theory is attempted to validate the results of CFD modeling in this study and to estimate the accuracy of theoretical approach at each pressure ratio too.

Development of In-tank Pressure Regulator and Solenoid Valve (내장형 레귤레이터 및 솔레노이드 개발)

  • Lee, Jun-Hyuk;Lim, Tae-Hoo;Kim, Kyung-Nam;Shim, Sang-Hak
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.188-191
    • /
    • 2007
  • This paper shows the Development of In-tank pressure regulator and Solenoid Valve used in FCV(Fuel Cell Vehicle). We have developed new type of Regulator and Solenoid through analysis of the structure and characteristics of component of FCS(Fuel Cell System) from the advanced technology. Now it is possible to localize the component by making use of the development of Regulator and Solenoid made by us. Regulator and Solenoid is a equipment to control hydrogen pressure supplied into a stack. Therefore, outlet pressure, a flow of fluid and temperature are important parameters according to a inlet pressure. And leak test, endurance test and burst test should be done to guarantee the performance and safety of Regulator and Solenoid used in the fuel of high pressure. Also, Hydrogen friendly materials are applied to inner parts of the Regulator, Solenoid and weight reduction is done to cost saving in part not related to performance. As a result, we have proven the good performance and reliability in endurance of Regulator, Solenoid and will make an development in performance as well as durability to ensure industrialization.

  • PDF

Analysis of Flow and Performance of Regulator for Clean Gas Supply System (가스 조절용 레귤레이터의 유동 및 성능해석)

  • Kim, M.K.;Lee, Y.S.;Choi, W.J.;Kwon, O.B.;Park, J.
    • Journal of Power System Engineering
    • /
    • v.13 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • In this study, flow characteristics at the regulators, which is very important for clean gas supply systems for semiconductors and LCD industries, are investigated. Numerical simulations are carried out to visualize flows at regulators for several flow rates and to investigate pressure losses at some parts in the regulator. Velocity field at the regulator along with the detailed velocity field near the spring and near the valve is shown. New regulator models are proposed in this paper, and numerical simulations are also carried out to visualize flows at regulator for several flow rates, and to investigate pressure losses at the parts in new models. Pressure drops a lot across the valve seat. Pressure drop increases as mass flow rate increases. Especially for small opening, pressure drop increases rapidly as mass flow rate becomes large.

  • PDF

Pressure Regulator for Piezoelectric Valve (압전 밸브용 압력 레귤레이터)

  • Yun, S.N.;Kim, C.Y.;Seo, S.W.;Park, J.H.;Ham, Y.B.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.3 no.2
    • /
    • pp.1-6
    • /
    • 2006
  • The pressure regulator which is used for controlling the reducing pressure in the piezoelectrically driven pneumatic valve has been studied. The pneumatic valve of this study object is 2-stage type and consists of a piezoelectric actuator, a controller, a poppet valve and a pressure regulator. Nominal flow of 50 lpm, maximum operating pressure of 0.9MPa and frequency characteristic of 10Hz and over are required in this pneumatic valve, but the pressure regulator is needed because piezoelectric actuator has no ability to control the pressure of 0.9MPa directly. In this study, bimorph type PZT actuator of $25.2mm(L){\times}7.2mm(W){\times}0.5mm(H)$ with constant of $-220{\times}10-12$ CN-1 was proposed and investigated. Maximum operating force of 0.052 N and maximum displacement of $63{\mu}m$ were gotten from the fabricated PZT actuator. From the analysis results, the orifice diameter of 0.6mm for a piezoelectric actuator was derived and then the pressure regulator which can be operated under 0.15 MPa easily was designed and manufactured. Performance and effects of design parameters were simulated by the Simulink of Matlab software, and it was confirmed that the performance characteristics of manufactured pressure regulator are superior in the common use pressure range of 0.5 MPa to 0.7 MPa. The results show that the proposed pressure regulator is suitable for the pneumatic valve with a PZT actuator.

  • PDF

A Study About Critical Flow Characteristics and the Pipeline Network Modeling of a Pressure Regulator (II) - The Influence of a Opening Ratio - (정압기의 임계유동 특성과 배관망해석 모델링에 관한 연구 (II) - 개도비 영향 -)

  • Shin Chang Hoon;Ha Jong Man;Lee Cheol Gu;Her Jae Young;Im Ji Hyun;Joo Won Gu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1299-1306
    • /
    • 2005
  • The suitable pressure regulator modeling at each opening ratio and pressure ratio is very important to obtain reliable results, especially in small scale pipeline network analysis such as a pressure regulator system. And it is needed to confirm both whether temperature recovery is achieved after passing by the pressure regulator's narrow neck and how much amount of low temperature area that can cause condensate accumulation is distributed by various PCV models and driving conditions. In this research, the numerical model resembling P company pressure regulator that is used widely for high pressure range in commercial, is adopted as the base model of CFD analysis to investigate pressure regulator's flow characteristics at each pressure ratio and opening ratio. And it is also introduced to examine pressure regulator's critical flow characteristics and possibility of condensation or freezing at each pressure ratio and opening ratio. Additionally, the comparison between the results of CFD analysis and the results of analytic solution obtained by compressible fluid-dynamics theory is attempted to validate the results of CFD modeling in this study and to estimate the accuracy of theoretical approach at each pressure ratio and opening ratio too.

A Study on the Characteristics of High Pressure Regulator for Vehicle CNG (자동차 CNG용 고압 레귤레이터의 특성해석에 관한 연구)

  • Kim, Byeong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.12
    • /
    • pp.5997-6003
    • /
    • 2011
  • To increase the driving distance of a natural gas vehicle, the high pressure of fuel charge is necessary and the development of the device reducing the pressure to suitable pressure for fuel of high pressure. In this study, Pressure characteristics at the pressure regulator, which is very important for gas supply systems for vehicles, are investigated. Numerical simulations are carried out to quantify pressures at regulators for several flow rates and to investigate pressure drop, hysteresis losses at some parts in the pressure regulator. Moreover, this paper presents a new kind of hydraulic simulation which is composed of CNG regulator. Lastly, experiments are carried out to verify the effectiveness of the prosed mathematical simulation with various regulator components as in real working condition.

Study on Performance of an Fuel Pressure Regulator under Failure Condition in an Electric Control Diesel Engine (전자제어 디젤엔진의 연료압력 레귤레이터 고장에 따른 진단 및 성능 연구)

  • Kim, Tae-Jung;Cho, Hong-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1677-1683
    • /
    • 2015
  • To cope with exhaust gas regulation, Diesel engine applied to electronic control system. As it accurately regulated the injected fuel mass and the fuel efficiency and the output are increased but the noise and the vibration are decreased. In order to keep the performance of Electronic Diesel Control System, it is important to accurately control the fuel pressure. However, when the regulator of fuel pressure is not controlled properly, the failure phenomenons(starting failure, staring delay, accelerated failure, engine mismatch et al.) occur because the fuel pressure is not stabilize. In this study, effects on a fuel pressure, engine rotating speed according to the control rate of fuel-pressure regulator are investigated in order to analyzed the performance variation with failure of fuel-pressure regulator. As a result, when the control rate of a fuel-pressure regulator is 4%~6% lower than that of standard condition, the variation of engine's rpm and return fuel flow is increased, and the abnormal condition was occurred. Besides, it is possible to diagnose the failures on fuel-pressure regulator under these conditions.

Numerical Study for The Critical-Flow-Characteristics of The Pressure Regulator and Considerations as a Pipe Network Element (I);Influence of the Inlet-Outlet Pressure Ratio (정압기 임계유동특성 및 배관망해석 요소로서의 고려에 관한 수치해석적 연구 (I);입출구 압력비 변화 영향)

  • Shin, C.H.;Ha, J.M.;Lee, C.G.;Her, J.Y.;Im, J.H.;Joo, W.G.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1448-1453
    • /
    • 2004
  • The major parameters governing the fluid dynamical and thermo-dynamical behavior in the large pipeline network system are friction loss and the pipeline length. But in local pipeline networks and relatively short distance pipeline system, secondary loss and the considerations of the moving states of the fluid machine are also important. One of the major element in local pressure control system is pressure regulator. It causes the variations of the physical properties in that pipeline system. Especially, as there is not enough information to obtain reliable physical property values such as density, temperature etc. at the downstream of the pressure regulator, It is hard to calculate accurate solution in the pipeline network analysis. In this study, some numerical approaches to investigate the critical-flow-characteristics of the pressure regulator have been done and the detail examinations and considerations of the pressure regulator as a pipeline network elements according to the variations of the inlet-outlet pressure ratio have been carried. Finally the flow-flied distributions, relations and critical-flow-characteristics have been studied. in detail and the 1D analytic method to analyze critical pipe flow have been investigated

  • PDF