• 제목/요약/키워드: Pressure Predict

검색결과 1,610건 처리시간 0.024초

추진체계 가압용 압력용기의 기체배출특성 모델에 관한 연구 (A Study on Model for Gas Venting Characteristic of Pressure Vessel for Propulsion System)

  • 황유준;변정주;이주영;김기언
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2017년도 제48회 춘계학술대회논문집
    • /
    • pp.268-276
    • /
    • 2017
  • 가압용 압력용기로부터 오리피스를 통해 기체가 배출되는 경우에 대하여 기체배출특성을 예측하기 위한 모델 개발에 대한 연구이다. 추진체계에 사용하기 적합한 압력용기에 대해 시험을 수행하여 대표적인 압력과 온도를 계측하였고, 압력용기 내부의 열전달에 대한 가정과 이에 대한 모델을 적용하여 시뮬레이션을 통해 압력과 온도를 예측하여 비교하였다. 그 결과 제안된 열전달 모델을 통해 계측된 압력과 온도와 유사한 예측 결과를 확인하였다.

  • PDF

점 압력 스펙트럼에 대한 준-이론 모델을 사용한 효율적이고 정확한 평판 뒷전 소음의 예측 (Efficient and Accurate Prediction of Flat Pate Trailing Edge Noise Using Semi-analytic Model for Point Pressure Spectra)

  • 이광세;정철웅
    • 한국소음진동공학회논문집
    • /
    • 제22권6호
    • /
    • pp.524-534
    • /
    • 2012
  • In order to predict trailing edge noise from a flat plate more effectively and accurately, the prediction algorithm based on semi-analytic model for point pressure spectrum is proposed. The semi-analytic model consists of empirical models for point pressure spectra and theoretical model to determine the boundary layer characteristics needed for the empirical models. The proposed methods are applied to predict the trailing edge noise of the flat plate located in the mean flow of speed 38 m/s, for which the measured data are available. In present study, six empirical models for point pressure spectra are utilized for the predictions of trailing edge noise and their prediction results are compared to the measured data. Through the analysis of these comparisons, it is revealed that the present method based on non-frozen formula using Efimtsov model and Smol'yakov-Tkachenko model can provide more accurate and efficient predictions of trailing edge noise.

소형터보압축기 회전차와 볼류트의 상호작용 (Interaction of Impeller and Volute in a Small-size Turbo-Compressor)

  • 김동원;안병재;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.807-812
    • /
    • 2001
  • The effects of casing shapes on the interaction of the impeller and volute in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuser, and casing, calculations with a multiple frame of reference method between the rotating and stationery parts of the domain are carried out. For incompressible turbulent flow fields, the continuity and three-dimensional time-averaged Navier-Stokes equations are employed. To predict the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load.

  • PDF

P-라인을 이용한 압력제어방식 CVT 변속비제어밸브 설계 (Design of Ratio Control Valve for a Pressure Control Type CVT Using P-Line)

  • 류완식;이용준;김현수
    • 한국자동차공학회논문집
    • /
    • 제12권3호
    • /
    • pp.145-151
    • /
    • 2004
  • In this paper, a pressure control type ratio control valve(RCV) is designed for a metal belt CVT. Steady state and transient characteristics of the pressure control CVT are investigated by simulations and experiments. In addition, P-line is proposed to predict the shift performance. It is found that the bigger the pressure margin, the faster the shift response. It is expected that the P-line can be used in design of the RCV to meet the desired shift performance.

Fluid Flow and Heat Transfer in a Super high-Pressure Mercury Lamp using CFD

  • Jang, Dong Sig;Lee, Yeon Won;Li, Kui Ming;Parthasarathy, Nanjundan;Choi, Yoon Hwan
    • International Journal of Safety
    • /
    • 제11권2호
    • /
    • pp.5-9
    • /
    • 2012
  • The discharge properties of super high-pressure mercury lamp are due to resistance heating for energy input, and results in temperature increase. The cooling equilibrium state is reached by the heat conduction, convection and radiation. In order to predict the fluid flow and heat transfer in and around the mercury lamp accurately, its visualization is of utmost importance. Such visualization is carried out by CFD program in this study. We focus on Anode shape to calculate four cases, namely AA, AB, AC and AD separately, and compare the temperature distribution and velocity vector in each case to predict cooling capacity and fluid flow properties. It can be concluded that the shape of anode plays an important role that affects the fluid flow and heat transfer in a mercury lamp.

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 추계학술발표회논문집(1)
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

Interruptions, Unreasonable Tasks, and Quality-Threatening Time Pressure in Home Care: Linked to Attention Deficits and Slips, Trips, and Falls

  • Elfering, Achim;Kottwitz, Maria U.;Hafliger, Evelyne;Celik, Zehra;Grebner, Simone
    • Safety and Health at Work
    • /
    • 제9권4호
    • /
    • pp.434-440
    • /
    • 2018
  • Background: In industrial countries, home care of community dwelling elderly people is rapidly growing. Frequent injuries in home caregivers result from slips, trips, and falls (STFs). The current study tests attentional cognitive failure to mediate the association between work stressors and STFs. Methods: A sample of 125 home caregivers participated in a questionnaire study and reported work interruptions, unreasonable tasks, quality-threatening time pressure, conscientiousness, attentional cognitive failures, and STFs. Results: In structural equation modeling, the mediation model was shown to fit empirical data. Indirect paths with attentional cognitive failures as the link between work stressors and STF were all significant in bootstrapping tests. An alternative accident-prone person model, that suggests individual differences in conscientiousness to predict attentional cognitive failures that predict more frequent work stressors and STFs, showed no significant paths between work conditions and STFs. Conclusion: To prevent occupational injury, work should be redesigned to reduce work interruptions, unreasonable tasks, and quality-threatening time pressure in home care.

병렬 마이크로 채널에서 FC-72의 2상 유동 마찰 압력 강하 예측 (Prediction methods for two-phase flow frictional pressure drop of FC-72 in parallel micro-channels)

  • 최용석;임태우;유삼상
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.821-827
    • /
    • 2014
  • 본 연구에서는 FC-72를 작동유체로 사용하여 병렬 마이크로 채널에서의 2상 유동 마찰 압력 강하를 예측하기 위한 실험적 연구를 수행하였다. 병렬 마이크로 채널은 깊이 0.2 mm, 폭 0.45 mm, 길이 60 mm의 15개의 마이크로 채널로 구성되었으며, 실험은 질량유속 $152.2{\sim}584.2kg/m^2s$, 열유속 $7.5{\sim}28.3kW/m^2$ 범위에서 이루어졌다. 실험에서 얻어진 자료는 기존의 마찰 압력 강하를 예측하기 위한 상관식들과 비교 분석하였다. 기존의 상관식은 일반적으로 균질 모델과 분리류 모델을 사용한다. 본 연구에서는 분리류 모델을 사용한 기존의 상관식을 수정하여 새로운 상관식을 제안하였으며, 그 결과 Mean Absolute Error 9.6%내에서 실험 결과를 잘 예측하였다.

유부하시의 열팽창분사식 소호부내의 상승압력 (Pressure Rise in the Thermal Expansion Chamber With Arc)

  • 박경엽;송기동;신영준;장기찬;김귀식;김진기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 C
    • /
    • pp.1344-1346
    • /
    • 1995
  • The interrupting capability of gas circuit breakers(GCB) are critically dependent on the pressure rise of the puffer cylinder or the thermal expansion chamber at current zero. Therefore it's very useful for the designers to know the pressure rise there at the design stage. Much effort has been done to predict the pressure rise in the puffer cylinder or the thermal expansion chamber in no-load condition. Thus, we now calculate it with reasonable accuracy with the simple programs coded by ourselves or with the commercial CFD packages. However, it has been still difficult problem to calculate it under the existence of arc. In this paper, we propose a method which can be used to predict the pressure rise in the thermal expansion chamber of thermal expansion type GCB. The method has been applied to the 25.8kV 25kA thermal expansion type model GCB and the calculated results have been compared with those from experiment.

  • PDF

케이싱 형상 변화가 소형 터보압축기 성능에 미치는 영향 (Effects of Casing Shape on the Performance of a Small-Size Turbo-Compressor)

  • 김동원;김윤제
    • 설비공학논문집
    • /
    • 제14권12호
    • /
    • pp.1031-1038
    • /
    • 2002
  • The effects of casing shape on the performance and interaction between the impeller and casing in a small-size turbo-compressor are investigated. Numerical analysis is conducted for the compressor with circular and single volute casings from inlet to discharge nozzle. In order to predict the flow pattern inside the entire impeller, vaneless diffuer and casing, calculations with multiple frames of reference method between the rotating and stationery parts of the domain are carried out. For compressible turbulent flow fields, the continuity and three-dimensional time-averaged Wavier-Stokes equations are employed. To evaluate the performance of two types of casings, the static pressure and loss coefficients are obtained with various flow rates. Also, static pressure distributions around casings are studied for different casing shapes, which are very important to predict the distribution of radial load. To prove the accuracy of numerical results, measurements of static pressure around casing and pressure difference between the inlet and outlet of the compressor are peformed for the circular casing. Comparisons of these results between the experimental and numerical analyses are conducted, and reasonable agreement is obtained.