• Title/Summary/Keyword: Pressure Interference

Search Result 235, Processing Time 0.024 seconds

Supersonic Multi-species Jet Interactions of Hit-to-Kill Interceptor with High Temperature Effect (고온효과를 고려한 직격 요격체 다화학종 초음속 제트 간섭)

  • Baek, Chung;Lee, Seungsoo;Huh, Jinbum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.187-194
    • /
    • 2020
  • In this study, computational analyses are carried out to investigate the interference flows and the aerodynamic characteristics of a hit-to-kill intercepter due to lateral jets at medium altitude. In addition, the analyses are performed for air and multi-species gas used in the side jet. The results indicate that the position of the barrel shock are shifted upstream and the structure of the shock wave are changed for the multi-species jet when compared to the air jet. As a result, the high pressure region with multi-species jet moves forward and the pitching moment is higher under the same flow condition. Moreover, the inclusion of high temperature effects makes drastic changes in pressure distribution. The jet width is much bigger, and the jet diffuses over wider range in medium altitude than in low altitude, because of the low density of the freestream.

Effect of the Inner Material and Pipe Geometry on the Flow and Induced Radiated Noise (파이프 내 흡음재 및 형상에 따른 유동 및 방사소음에 대한 수치해석적 연구)

  • Lee, Su-Jeong;Lim, Hee-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.423-430
    • /
    • 2014
  • Noise and vibration, which occur in a pipe, are usually caused by the interaction between the turbulent flow and nearby wall. Although it can be estimated by a simple case of expanded pipes having complex turbulent flow, the radiated noise is highly dependent upon the size, shape, and thickness of the given model. In addition, the radiated noise propagates and has serious interference and destabilization effects on the surrounding systems, which can lead to fatigue fracture and failure. This study took advantage of the variety of commercial programs, such as FLUENT (flow solver), NASTRAN (dynamic motion solver of complex structures) and VIRTUAL LAB (radiated noise solver) based on the boundary element method (BEM), to understand the underlying physics of flow noise. The expanded pipe has separation and a high pressure drop because of the abrupt change in the cross-section. Based on the radiated noise calculations, the noise level was reduced to around 20 dB in the range of 100-500 Hz.

A Study on the Resistance Performance of the Goose Neck Bulbous Bow by Numerical Simulation Method (수치시뮬레이션기법을 이용한 거위목 벌브의 저항성능에 관한 연구)

  • Yu, Jin-Won;Lee, Young-Gill;Jeong, Kwang-Leol
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.5
    • /
    • pp.689-696
    • /
    • 2010
  • Bulbous bow is one of the important design factors on the design of fore-body hull form. Using the interference technique of ship waves, the bulbous bow can decrease the wave resistance of ship. Recently, the goose neck bulb is applied mainly for high speed vessels like passenger ships and ferries etc.. Also, the goose neck bulb is applied for relatively high speed merchant vessels like container ships and LNG carriers. However, existing research papers about the goose neck bulb are not enough as reference data for the design of bow hull form. In this study, numerical calculations are carried out to investigate the bow wave characteristics of a high speed ferry with a normal high nose bulb or a goose neck bulb. By comparing the pressure distributions on the hull surface and the wave systems near the bow, the features of wave resistance reduction are discussed. Also, Numerical calculations were carried out for a series of goose neck bulbs to figure out the optimum bulb size. The maximum reduction rate of pressure resistance for the fore-body is achievable up to 8% by adopting the goose neck bulb in the present calculation.

Diverse characters of Brennan's paw incision model regarding certain parameters in the rat

  • Kumar, Rahul;Gupta, Shivani;Gautam, Mayank;Jhajhria, Saroj Kaler;Ray, Subrata Basu
    • The Korean Journal of Pain
    • /
    • v.32 no.3
    • /
    • pp.168-177
    • /
    • 2019
  • Background: Brennan's rodent paw incision model has been extensively used for understanding mechanisms underlying postoperative pain in humans. However, alterations of physiological parameters like blood pressure and heart rate, or even feeding and drinking patterns after the incision have not been documented as yet. Moreover, though eicosanoids like prostaglandins and leukotrienes contribute to inflammation, tissue levels of these inflammatory mediators have never been studied. This work further investigates the antinociceptive effect of protein C after intra-wound administration. Methods: Separate groups of Sprague-Dawley rats were used for quantitation of cyclooxygenase (COX) activity and leukotriene B4 level by enzyme-linked immunosorbent assay, as well as estimation of cardiovascular parameters and feeding and drinking behavior after paw incision. In the next part, rats were subjected to incision and $10{\mu}g$ of protein C was locally administered by a micropipette. Both evoked and non-evoked pain parameters were then estimated. Results: COX, particularly COX-2 activity and leukotriene B4 levels increased after incision. Hemodynamic parameters were normal. Feeding and drinking were affected on days 1 and 3, and on day 1, respectively. Protein C attenuated non-evoked pain behavior alone up to day 2. Conclusions: Based upon current observations, Brennan's rodent paw incision model appears to exhibit a prolonged period of nociception similar to that after surgery, with minimal interference of physiological parameters. Protein C, which is likely converted to activated protein C in the wound, attenuated the guarding score, which probably represents pain at rest after surgery in humans.

Development of Bi-directional Triple-eccentric Type Butterfly Valve (양방향 삼중편심 버터플라이 밸브 개발)

  • Kim, Soo-Young;Lee, Dong-Myung;Bae, Jung-Hoon;Shin, Sung-Chul;Sul, Chang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.5
    • /
    • pp.545-551
    • /
    • 2009
  • In naval architecture and offshore engineering, the development and a broad use has been achieved in the field of flow control valves for pipe system. Butterfly valves are also widely used for flow control, but there are not many studies for triple-eccentric butterfly valves. Moreover, if the fluid of pipeline flows in the bi-direction then it makes more complicate to adapt triple-eccentric butterfly valves to flow control. In this study, we are trying to develop a bi-directional triple-eccentric butterfly valve through sealing mechanism and stem design study. Digital mockup using 3D CAD was constructed for shape interference check and structural analysis was conducted for structural safety. Also we performed leakage test to check out the durability of the bi-directional pressure for the developed valve.

Turbulent Flow Calculation around Yacht Sails (요트 세일 주위의 난류유동 계산)

  • Chi, Hye-Ryoun;Kim, Wu-Joan;Park, Jong-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.2 s.152
    • /
    • pp.64-73
    • /
    • 2007
  • Turbulent flows around yacht sails were calculated to access the applicability of CFD for yacht design. Multi-block grid system was generated by using Gridgen package and Fluent was used to calculate flows around two sail system. A 30ft class sailing yacht designed and tested by KRISO was chosen. The interference effect between main and jib sails was analyzed. Pressure distribution on the sails was obtained and the center of effort was estimated. It was found that the jib angle affects the flow phenomena around a main sail due to the change of inflow angle. The location of center of effort is much different from the empirical formula based on a simple geometrical consideration. The calculated results are compared with the previous numerical and experimental results. Both CFD results are similar, but there are some discrepancies with experimental data. However, it is certain that CFD can be a very useful tool for yacht design.

NUMERICAL ANALYSIS OF FUEL INJECTION IN INTAKE MANIFOLD AND INTAKE PROCESS OF A MPI NATURAL GAS ENGINE

  • XU B. Y.;LIANG F. Y.;CAI S. L.;QI Y. L.
    • International Journal of Automotive Technology
    • /
    • v.6 no.6
    • /
    • pp.579-584
    • /
    • 2005
  • Unsteady state free natural gas jets injected from several types of injectors were numerically simulated. Simulations showed good agreements with the schlieren experimental results. Moreover, injections of natural gas in intake manifolds of a single-valve engine and a double-valve engine were predicted as well. Predictions revealed that large volumetric injections of natural gas in intake manifolds led to strong impingement of natural gas with the intake valves, which as a result, gave rise to pronounced backward reflection of natural gas towards the inlets of intake manifolds, together with significant increase in pressure in intake manifold. Based on our simulations, we speculated that for engines with short intake manifolds, reflections of the mixture of natural gas and air were likely to approach the inlets of intake manifolds and subsequently be inbreathed into other cylinders, resulting in non-uniform mixture distributions between the cylinders. For engines with long intake manifolds, inasmuch as the degrees of intake interferences between the cylinders were not identical in light of the ignition sequences, non-uniform intake charge distributions between the cylinders would occur.

A Research on Characteristics of Semi-active Muffler Using Difference of Transmission Paths (전달경로의 차이를 이용한 차량용반능동형 머플러의 특성에 관한 연구)

  • 이종민;김경목;손동구;이장현;황요하
    • Journal of KSNVE
    • /
    • v.11 no.3
    • /
    • pp.401-409
    • /
    • 2001
  • Passive type mufflers installed on every car haute inherent problem of lowering engine power and fuel efficiency caused by backpressure which is byproduct of complex internal structure. Recent improvements like installing a calve to change exhaust gas path depending on power requirement and rpm have only marginally improved performance. Tremendous amount of recent research works on active exhaust noise control have failed to commercialize because of numerous physical and economical reasons. In this paper, a unique seal-active muffler using difference of transmission paths is presented. In this system exhaust pipe is divided into two and joined again downstream. Exhaust noise is reduced by destructive interference when two-divided noise join again with transmission paths'difference which is half of the wavelength of a main noise frequency. One divided path has a sliding mechanism to change length thereby transmission path length difference is adjusted to entwine rpm change. The proposed system has minimal backpressure and does not need a secondary sound source like a speaker so it can overcome many problems of failed active noise control methods. We have verified proposed system's superior performance by simulation and comparison experiment with passive mufflers.

  • PDF

Fabrication of Nb SQUID on an Ultra-sensitive Cantilever (Nb SQUID가 탑재된 초고감도 캔티레버 제작)

  • Kim, Yun-Won;Lee, Soon-Gul;Choi, Jae-Hyuk
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Superconducting quantum phenomena are getting attention from the field of metrology area. Following its first successful application of Josephson effect to voltage standard, piconewton force standard was suggested as a candidate for the next application of superconducting quantum effects in metrology. It is predicted that a micron-sized superconducting Nb ring in a strong magnetic field gradient generates a quantized force of the order of sub-piconewtons. In this work, we studied the design and fabrication of Nb superconducting quantum interference device (SQUID) on an ultra-thin silicon cantilever. The Nb SQUID and electrodes were structured on a silicon-on-insulator (SOI) wafer by dc magnetron sputtering and lift-off lithography. Using the resulting SOI wafer, we fabricated V-shaped and parallel-beam cantilevers, each with a $30-{\mu}m$-wide paddle; the length, width, and thickness of each cantilever arm were typically $440{\mu}m,\;4.5{\mu}m$, and $0.34{\mu}m$, respectively. However, the cantilevers underwent bending, a technical difficulty commonly encountered during the fabrication of electrical circuits on ultra-soft mechanical substrates. In order to circumvent this difficulty, we controlled the Ar pressure during Nb sputtering to minimize the intrinsic stress in the Nb film and studied the effect of residual stress on the resultant device.

  • PDF

Shape Optimization of an Automotive Wheel Bearing Seal Using the Response Surface Method (반응표면법을 사용한 자동차용 휠 베어링 시일의 형상 최적화)

  • Moon, Hyung-Ll;Lm, Jong-Soon;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.84-90
    • /
    • 2010
  • This paper presents the shape optimization process for the automotive wheel bearing seal lip using the finite element method and the response surface method. First, to predict performance of the bearing seal lip, we used the non-linear finite element analysis. And then, we compared the analysis results with the test results to verify the finite element model. The objective function in optimizing process was obtained from results of the mud slurry test, which is one of many tests for evaluating performance of wheel bearing. After the mud slurry test for the four models which have the similar cross-sectional shape, we measured the wear area of the seal lip and the moisture content in grease. The objective function has been chosen by comparing the results of mud slurry test and characteristics of seal lip, such as contact force, contact area, contact pressure, and interference. Finally, within limited design parameters, we suggested the optimized shape of seal lip, which is expected to improve the wear and the sealing effect of it.