• Title/Summary/Keyword: Pressure Interference

Search Result 235, Processing Time 0.026 seconds

Comparison and Application of Alkali Fusion and High Pressure Acid Digestion Methods for the Analysis of Ultra Fine Powder Ceramics (파인 세라믹의 분석을 위한 알칼리 용융법과 고압 산분해법의 비교 및 응용)

  • Im, Heung Bin;Han, Jeong Ran;Lee, Gye Ho;Lee, Gwang U;Yu, Taek A Myeong
    • Journal of the Korean Chemical Society
    • /
    • v.38 no.6
    • /
    • pp.411-417
    • /
    • 1994
  • For the analysis of fine ceramics, which is one of the new materials difficult to be dissolved, the methods of sample pretreatments such as alkali fusion and high pressure acid digestion were studied using inductively coupled plasma-atomic emission spectrometer(ICP-AES). For the Al2O3 powder sample, the results from high pressure acid digestion method showed better reproducibility than those obtained by alkali fusion technique. In the case of the analysis of SiC powder using the former method, impurities of the powder in the range of ppm were determined without matrix interference by removing Si as Si-F volatilization. Japan Certified Reference Materials (JCRM022 and JCRM023) were analyzed by this method for ultra fine powder and the results showed high accuracy and good reproducibility.

  • PDF

Cost-Benefit Analysis in order to Select the Reasonably Practical Risk Reduction Measures(RRMs) on High Pressure Urban Gas Pipelines (도시가스 고압배관의 합리적인 위험감소조치 선정을 위한 비용-편익분석)

  • Ryou, Young-Don;Kim, Young-Seob;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.2
    • /
    • pp.40-46
    • /
    • 2011
  • The purpose of CBA(cost-benefit analysis) in risk assessment is to show whether the benefits of implementing additional risk reduction methods(RRMs) derived through risk assessment outweigh its costs and it is proper to implement the methods. In this paper CBA has been conducted in order to select the most effective and reasonable RRM as implementing the RRM derived after QRA for the high pressure urban gas pipelines. As conducting QRA again by applying the derived RRMs, No. 10 measure which includes pipeline corrosion monitoring, MOV(motor operated valve) installation and the method to protect pipeline damage caused by third-party mechanical interference has showed the highest risk reduction effect. Also it has been considered to be reasonably practicable by conducting CBA and then is selected as the most effective and reasonable RRM on the objects of this paper.

Risk Reduction Rate for Each Risk Mitigation Measure on High Pressure Urban Gas Pipelines Proposed by Quantitative Risk Analysis (정량적 위험성 평가를 통해 제안된 도시가스 고압배관의 위험경감조치별 위험감소효과)

  • Ryou, Young-Don;Jo, Young-Do;Park, Young-Gil;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.18-23
    • /
    • 2010
  • After conducting QRA(quantitative risk assessment) for the high pressure urban gas pipelines planned to be installed, RMMs(risk mitigation measures) when the societal risk is outside the acceptable region have been derived in this paper. Also risk reduction rates are calculated for each RMM. As a result of QRA, we find out that damaged distance caused by radiational heat is largely dependent upon the wind velocity and the atmospheric stability. The measure that has the highest risk reduction effect is No. 10 which includes pipeline corrosion monitoring, MOV(motor operated valve) installation and the method to protect pipeline damage caused by third-party mechanical interference, and which shows 75 % of risk reduction effect.

CFD Analysis on the Flow Characteristics of Diffuser/Nozzles for Micro-pumps (마이크로 펌프용 디퓨져/노즐의 유동 특성에 관한 CFD 해석)

  • Kim Donghwan;Han Dong-Seok;Jeong Siyoung;Hur Nahmkeon;Yoon Seok-Jin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.6
    • /
    • pp.544-551
    • /
    • 2005
  • The flow characteristics have been numerically investigated for various shapes of the diffuser/nozzles which are used for a valveless micro-pump. The important parameters considered in this study are the throat width ($15\~120\mu$m), the taper angle ($3.15\~25.2^{\circ}$), and the diffuser length ( $600\~4,800\mu$m), and the size of the middle chamber ($1\~16mm^2$). To find the optimal values for these parameters, steady state calculations have been performed assuming the constant pressure difference between the inlet and exit of the flow For the taper angle and the throat width, it is found that there exists an optimum at which the net flow rate is the greatest. The optimal taper angle is in the range of $10\~20^{\circ}$ for all the pressure differences; and the throat width indicates an optimal value near $75\mu$m for the case of 35 kPa pressure difference. The net flow rate is also influenced by the size of the middle chamber. With decreasing chamber size, the net flow rate is reduced because of the interference between two streams flowing into the middle chamber. The unsteady pulsating flow characteristics for a micro-pump with a given diffuser/nozzle shape have been also investigated to show the validity of the steady state parametric study.

Vibration Analysis for the L-1 Stage Bladed-disk of a LP Steam Turbine (증기터빈 저압 L-1단 블레이드-디스크 연성 진동 특성 분석)

  • Lee, Doo-Young;Bae, Yong-Chae;Kim, Hee-Soo;Lee, Yook-Ryun;Kim, Doo-Young
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.1
    • /
    • pp.29-35
    • /
    • 2010
  • This paper studies causes of the L-1 blade damage of a low pressure turbine, which was found during the scheduled maintenance, in 500 MW fossil power plants. Many failures of turbine blades are caused by the coupling of aerodynamic forcing with bladed-disk vibration characteristics. In this study the coupled vibration characteristics of the L-1 turbine bladed-disk in a fossil power plant is shown for the purpose of identifying the root cause of the damage and confirming equipment integrity. First, analytic and experimental modal analysis for the bladed-disk at zero rpm as well as a single blade were performed and analyzed in order to verify the finite element model, and then steady stresses, natural frequencies and corresponding mode shapes, dynamic stresses were calculated for the bladed-disk under operation. Centrifugal force and steady steam force were considered in calculation of steady and dynamic stress. The proximity of modes to sources of excitation was assessed by means of an interference diagram to examine resonances. In addition, fatigue analysis was done for the dangerous modes of operation by a local strain approach. It is expected that these dynamic characteristics will be used effectively to identify the root causes of blade failures and to perform prompt maintenance.

Effectiveness of Electromagnetic Interference Shielding of Carbon Nanofiber/Poly(vinylidene fluoride) Composites as a Function of Beat Treatment Temperature and Time (열처리 온도와 시간에 따른 나노탄소섬유/PVDF 복합재의 전자파 차폐 특성)

  • 김명수;이방원;우원준;안광희
    • Polymer(Korea)
    • /
    • v.25 no.3
    • /
    • pp.367-374
    • /
    • 2001
  • The electromagnetic interference (EMI) shielding effectiveness (SE) of poly(vinylidene fluoride) (PVDF) composites was investigated using carbon nanofiber fillers prepared by catalytic chemical vapor deposition of various carbon-containing gases over Ni and Ni-Cu catalysts. The electrical conductivity of carbon nanofiber which was regarded as the key property of filler for the application of EMI shielding ranged from 4.2 to 22.4 S/cm at a pressure of 10000 psi. The electrical conductivity of carbon nanofiber/PVDF composites ranged from 0.22 to 2.46 S/cm and the EMI SE of those was in the range of 2∼13 dB. The electrical conductivity of carbon nanofibers increased with the increase in heat treatment temperature and time, while the electrical conductivity of the composites increased rapidly at the initial heat treatment and then approached a certain value with the further increase of heat treatment. The SE of the composites showed a maximum at the medium heat treatment and was proportional to the electrical conductivity of the composites. It was concluded that the specific surface area of carbon nanofibers decreased with the continual heat treatment and the specific surface area of filler was an important factor for the SE of the composites.

  • PDF

Aerodynamic properties of a streamlined bridge-girder under the interference of trains

  • Li, Huan;He, Xuhui;Hu, Liang;Wei, Xiaojun
    • Wind and Structures
    • /
    • v.35 no.3
    • /
    • pp.177-191
    • /
    • 2022
  • Trains emerging on a streamlined bridge-girder may have salient interference effects on the aerodynamic properties of the bridge. The present paper aims at investigating these interferences by wind tunnel measurements, covering surface pressure distributions, near wake profiles, and flow visualizations. Experimental results show that the above interferences can be categorized into two primary effects, i.e., an additional angle of attack (AoA) and an enhancement in flow separation. The additional AoA effect is demonstrated by the upward-moved stagnation point of the oncoming flow, the up-shifted global symmetrical axis of flow around the bridge-girder, and the clockwise-deflected orientation of flow approaching the bridge-girder. Due to this additional AoA effect, the two critical AoAs, where flow around the bridge-girder transits from trailing-edge vortex shedding (TEVS) to impinging leading-edge vortices (ILEV) and from ILEV to leading-edge vortex shedding (LEVS) of the bridge-girder are increased by 4° with respect to the same bridge-girder without trains. On the other hand, the underlying flow physics of the enhancement in flow separation is the large-scale vortices shedding from trains instead of TEVS, ILEV, and LEVS governed the upper half bridge-girder without trains in different ranges of AoA. Because of this enhancement, the mean lift and moment force coefficients, all the three fluctuating force coefficients (drag, lift, and moment), and the aerodynamic span-wise correlation of the bridge-girder are more significant than those without trains.

Numerical Investigations on the Excavation Width and Property of Deformation of Earth Retaining Wall (흙막이 벽체의 굴착 폭과 변형특성에 관한 수치해석적 연구)

  • Park, Choon-Sik;Joung, Sung-min
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.57-68
    • /
    • 2020
  • In the case of two-dimensional analysis generally applied in the analysis of Earth Retaining Wall, mutual interference occurs due to earth pressure, when the excavation width is small, and in the section where the excavation width is small, and the resulting influence makes it difficult to secure reliability in the horizontal displacement of the retaining wall when performing 2-dimensional analysis in a section with a small excavation width. This study performed two-dimensional and three-dimensional finite element analyses on excavation depth (H) and excavation width (B) under various conditions for the H-pile earth wall, in the geological conditions of clayey soil, sandy soil, and weathered rock, and examined the relationship between excavation width and horizontal displacement according to each condition, to identify the boundary of the excavation width, which is the range of mutual interference caused by earth pressure. As a result, it was possible to clearly distinguish the analytical boundary according to the excavation width only in the clayey soils with relatively large horizontal displacement. It is concluded that it is reasonable to perform a 3D finite element analysis, which is similar to the actual behavior, if the excavation scale (B/H) is 2.0 or less, with the digging width less than 12 m at a digging depth of 10 m or less, and with the the one less than 24 m at a digging depth of 10 m or more, and that 2-dimensional finite element analysis may be used in cases where the excavation width is greater than 12 m when the excavation scale (B/H) is 2.0 or more and the excavation depth is 10 m or less, and the excavation width is greater than 24 m at an excavation depth of 10 m or more.

A Study on Efficient Deconstruction of Supporters with Response Ratio (응답비를 고려한 효율적인 버팀보 해체방안에 관한연구)

  • Choi, Jung-Youl;Park, Sang-Wook;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.469-475
    • /
    • 2022
  • As the recent structure construction is constructed as a large-scale and deep underground excavation in close proximity to the building, the installation of retaining wall and supporters (Struts) has become complicated, and the number of supporters to avoid interference of the structural slab has increased. This construction process becomes a factor that causes an increase in construction joints of a structure, leakage and an increase in wall cracks. In addition, this reduced the durability and workability of the structure and led to an increase in the construction period. This study planned to dismantle the two struts simultaneously as a plan to reduce the construction joints, and corrected the earth pressure by assuming the reaction force value by the initial earth pressure and the measured data as the response ratio. After recalculating the corrected earth pressure through the iterative trial method, it was verified by numerical analysis that simultaneous disassembly of the two struts was possible. As a result of numerical analysis applying the final corrected earth pressure, the measured value for the design reaction force was found to be up to 197%. It was analyzed that this was due to the effect of grouting on the ground and some underestimation of the ground characteristics during design. Based on the result of calculating the corrected earth pressure in consideration of the response ratio performed in this study, it was proved analytically that the improvement of the brace dismantling process is possible. In addition, it was considered that the overall construction period could be shortened by reducing cracks due to leakage and improving workability by reducing construction joints. However, to apply the proposed method of this study, it is judged that sufficient estimations are necessary as there are differences in ground conditions, temporary facilities, and reinforcement methods for each site.

Numerical Analysis on the Pressure Distributions around a Circular Cylinder by Control Rods (제어봉에 의한 원형실린더 주위의 압력분포에 관한 수치해석)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Hwan
    • Journal of Navigation and Port Research
    • /
    • v.31 no.6
    • /
    • pp.485-490
    • /
    • 2007
  • The purpose in having a control rod on a buoy system is to control the motion of it. The system may be composed entirely of a single circular cylinder and a long mooring anchor cable. A control rod has one function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of the effects of mutual interference. then determine the stability characteristics of the body. In this paper, the study of control-rod-attached buoy's 2-dimensional section was accomplished. model tests and numerical simulations had been carried out with different diameters of control rods. and varying the Reynolds number $Re=5,000{\sim}25,000$ based on the cylinder diameter(D=50mm) to predict the performance of the body and the 2 frame particle tracking method Iud been used to obtain the velocity distribution in the flow field. 50mm circular cylinder Iud been used during the whole experiments and measured results had been compared with each other.