• Title/Summary/Keyword: Pressure Interference

Search Result 235, Processing Time 0.025 seconds

Experimental study of wind-induced pressures on tall buildings of different shapes

  • Nagar, Suresh K;Raj, Ritu;Dev, Nirendra
    • Wind and Structures
    • /
    • v.31 no.5
    • /
    • pp.431-443
    • /
    • 2020
  • The modern tall buildings are often constructed as an unconventional plan and as twin buildings. Wind load on the tall building is significantly influenced by the presence of another building in the near vicinity. So, it is imperative to study wind forces on an unconventional plan shaped tall building. Mean wind pressure coefficients of a square and 'H' plan shape tall buildings are investigated using wind tunnel experiments. The experiments were carried out for various wind directions from 00 to 900 at an interval of 300 and various locations of the identical interfering building. The experimental results are presented at the windward face from the viewpoint of effects on cladding design. To quantify the interference effects, interference factors (I.F) are calculated. Mean pressure coefficients of both models are compared for isolated and interference conditions. The results show that pressure reduces with an increase in wind angle till 600 wind direction. The interfering building at full blockage interference condition generates more suction than the other two conditions. The interference factor for both models is less than unity. H-plan building model is subjected to a higher pressure than the square model.

Reduction in Pressure Ripples for a Bent-Axis Piston Pump (사축식 액셜 피스톤 펌프의 압력맥동 감소)

  • Kim, Kyung-Hoon;Sohn, Kwon;Jang, Joo-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Bent-axis piston pump have been commonly used in hydraulic systems because of high pressure level, best efficiency, low shear force on pistons and low operating costs. The other side, they have a few demerits like that they have the relatively high number of moving parts and more discharge pressure ripples. Especially, the discharge pressure ripples bring about vibrations and noises in hydraulic system components such as connecting pipes and control valves, so that these deteriorate the stability and accuracy of the systems. Therefore, the hydraulic systems having the bent-axis piston pump require the methods to reduce the discharge pressure ripples. So, the purpose of this paper is to reduce the discharge pressure ripples by the phase interference of pressure wave and to develope the analysis model of the pumps to predict the discharge pressure ripples. In this paper, the analysis model of the bent-axis piston pump was developed using the AMESim software, and the reliability of that was verified by the comparison with the experimental results. The hydraulic pipeline with a parallel line was used as the method to generate the phase interference of pressure wave. the dynamics characteristics of the hydraulic pipeline with a parallel line were analyzed by a transfer matrix method. the usefulness of the phase interference of pressure wave was investigated through the experiment and simulation. The results from the experiment and simulation said that the phase interference of pressure wave by the hydraulic pipeline with a parallel line could reduce the discharge pressure wave of the pump well. The analysis model of the bent-axis piston pump developed in this paper and the method of the phase interference by the hydraulic pipeline with a parallel line are expected to be helpful to achieve the design of the pump and to reduce the discharge pressure wave of the pump effectively.

Navier-Stokes Analysis of Pitching Delta Wings in a Wind Tunnel

  • Lee, Yung-Gyo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.28-38
    • /
    • 2001
  • A numerical method for the assessment and correction of tunnel wall interference effects on forced-oscillation testing is presented. The method is based on the wall pressure signature method using computed wall pressure distributions. The wall pressure field is computed using unsteady three-dimensional full Navier-Stokes solver for a 70-degree pitching delta wing in a wind tunnel. Approximately-factorized alternate direction implicit (AF-ADI) scheme is advanced in time by solving block tri-diagonal matrices. The algebraic Baldwin-Lomax turbulence, model is included to simulate the turbulent flow effect. Also, dual time sub-iteration with, local, time stepping is implemented to improve the convergence. The computed wall pressure field is then imposed as boundary conditions for Euler re-simulation to obtain the interference flow field. The static computation shows good agreement with experiments. The dynamic computation demonstrates reasonable physical phenomena with a good convergence history. The effects of the tunnel wall in upwash and blockage are analyzed using the computed interference flow field for several reduced frequencies and amplitudes. The corrected results by pressure signature method agree well with the results of free air conditions.

  • PDF

Generalized Sidelobe Canceler for TPMS Interference Cancellation (TPMS 간섭제거를 위한 Generalized Sidelobe Canceler)

  • Park, Cheol;Hwang, Suk-Seung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.5
    • /
    • pp.663-668
    • /
    • 2012
  • A TPMS(Tire Pressure Monitoring System) is a wireless communication system designed to monitor the pressure and temperature of pneumatic tires of a vehicle. In order to provide the aid in protecting a driver, this system reports tire pressure information to the driver of the vehicle. Since the wireless communication technique should be employed to transmit the TPMS data from each tire to signal processing unit in the vehicle, it suffers from interference signals from external electrical or electronics equipments. In this paper, we propose the TPMS interference cancellation technique based on GSC(Generalized Sidelobe Canceler), which does not have only the excellent performance like MVDR(Minimum-Variance-Distortionless-Response) but also has the low computational complexity comparing with MVDR. The performance of interference suppression is conformed by computer simulation examples.

Interference Effects on the Thickness of a Pulse Pressure Sensor Array Coated with Silicone (맥 센서 어레이(array)의 실리콘(silicone) 코팅 두께에 따른 센서 간 간섭효과)

  • Jun, Min-Ho;Jeon, Young Ju;Kim, Young-Min
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.1
    • /
    • pp.35-40
    • /
    • 2016
  • Pulse diagnosis is one of the representative diagnostic methods in Oriental medicine. In this study, a pulse pressure sensor array coated with silicone, which includes 6 piezo-resistive sensors and 1 thermistor, is fabricated for pulse measurement. It is necessary to coat the pulse sensor array with silicone to avoid the fracture or damage of pressure sensors when the sensor is in contact with the skin and a constant pressure is applied. However, the silicone coating on the pulse sensor array can cause signal interference among the sensors in the pulse sensor array. The interference number (IN), a calculation for expressing the degree of interference among channels, is changed according to the silicone thickness on the pulse sensor array. The IN is increased by a thick silicone coating, but the fabrication error, an important index for the mass production of the sensor array, is reduced by the thickness of the silicone coating. We propose that the thickness of the silicone on the pulse sensor array is an important consideration for the performance of the fabricated sensor and manufacturing repeatability.

A Study on the Reduction in Pressure Ripples for a Bent-Axis Piston Pump by a Phase Interference (위상간섭을 이용한 사축식 액셜 피스톤 펌프의 압력맥동 감소에 대한 연구)

  • 김경훈;최명진;이규원;장주섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.9
    • /
    • pp.103-110
    • /
    • 2004
  • Pressure ripples yield noise and vibration in hydraulic pipelines, which are inevitably generated by a fluctuation of flow rate in the pump mechanism, and such noise and vibration deteriorate the stability and accuracy of hydraulic systems. To reduce the pressure ripples, accumulator and hydraulic attenuator are normally used. In this study, parallel pipeline with a bent-axis piston pump is introduced to a hydraulic pipe system as a method for reducing the pressure ripples and using the transfer matrix method, the dynamic characteristics of the pipe system are analysed and compared with experimental results. The results show that the phase interference using parallel pipeline with a bent-axis piston pump is effective to reduce the pressure ripples in the hydraulic pipelines.

Advances in Non-Interference Sensing for Wearable Sensors: Selectively Detecting Multi-Signals from Pressure, Strain, and Temperature

  • Byung Ku Jung;Yoonji Yang;Soong Ju Oh
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.340-351
    • /
    • 2023
  • Wearable sensors designed for strain, pressure, and temperature measurements are essential for monitoring human movements, health status, physiological data, and responses to external stimuli. Notably, recent research has led to the development of high-performance wearable sensors using innovative materials and device structures that exhibit ultra-high sensitivity compared with their commercial counterparts. However, the quest for accurate sensing has identified a critical challenge. Specifically, the mechanical flexibility of the substrates in wearable sensors can introduce interference signals, particularly when subjected to varying external stimuli and environmental conditions, potentially resulting in signal crosstalk and compromised data fidelity. Consequently, the pursuit of non-interference sensing technology is pivotal for enabling independent measurements of concurrent input signals related to strain, pressure, and temperature, ensuring precise signal acquisition. In this comprehensive review, we present an overview of the recent advances in noninterference sensing strategies. We explore various fabrication methods for sensing strain, pressure, and temperature, emphasizing the use of hybrid composite materials with distinct mechanical properties. This review contributes to the understanding of critical developments in wearable sensor technology that are vital for their ongoing application and evolution in numerous fields.

Numerical investigation of wind interference effect on twin C-shaped tall buildings

  • Himanshoo Verma;R. S. Sonparote
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.425-444
    • /
    • 2023
  • This study is to investigate the effect of interference between two C-shaped high-rise buildings by computational fluid dynamics (CFD), focusing on the variation of the local pressure coefficient (CP) and the mean pressure coefficient (CPMEAN). Sixteen building position cases are considered for the present study. These cases were based on the position and height of the interference building (IB). The pressure coefficient (CP) is calculated on the principal building (PB) and is compared with an isolated building identical in shape and size. The interference effect on PB has also been presented in reference for the interference factor (IF). According to the findings, the maximum force coefficient on the PB is 0.971 and it is 10.97% more than the isolated PB when IB is located at position 2b (two times the width of the building), and the interfering height of 13H/15 mm. The moment coefficient on PB is 1.27, which is 27.36% less than the isolated case in which IB pushed 2b to 3b in the y direction with 750 mm height. In most of the cases, because of the shielding effect of the IB, the value of force coefficient (CF) on PB has been reduced. On the face of the PB, there are also considerable differences in the mean pressure coefficient CPMEAN. When IB was positioned at a location of 2b in Y direction and an interfering height of 13H/15 mm, the maximum CPMEAN (1.58) was observed on the leeward face of PB.

An efficient optimization approach for wind interference effect on octagonal tall building

  • Kar, Rony;Dalui, Sujit Kumar;Bhattacharjya, Soumya
    • Wind and Structures
    • /
    • v.28 no.2
    • /
    • pp.111-128
    • /
    • 2019
  • In this paper an octagon plan shaped building (study building) in presence of three square plan shaped building is subjected to boundary layer wind flow and the interference effects on the study building is investigated using Computational fluid dynamics. The variation of the pressure coefficients on different faces of the octagon building is studied both in isolated and interference conditions. Interference Factors (IF) are calculated for different faces of the study building which can be a powerful tool for designing similar plan shaped buildings in similar conditions. A metamodel of the IF, in terms of the distances among buildings is also established using Response Surface Method (RSM). This set of equations are optimized to get the optimum values of the distances where the IF is unity. An upstream Interference zone for this building setup and wind environment is established from these data. Uncertainty principle is also utilised to determine the optimum positions of the interfering buildings considering the uncertain nature of wind flow for minimum interference effect. The proposed procedure is observed to be computationally efficient in deciding optimum layout at buildings often required in city planning. The results show that the proposed RSM-based optimization approach captures the interference zone accurately with substantially less number of experiments.

Analysis of a Lip Seal Behavior for Rotary Union (로터리 유니온용 립 시일의 거동 해석)

  • Park, Tae-Jo;Yoo, Jae-Chan
    • Tribology and Lubricants
    • /
    • v.23 no.6
    • /
    • pp.272-277
    • /
    • 2007
  • Various type of rotary unions are widely used to provide fluids between rotating parts. To prevent fluid leakage, most of the rotary unions adopt mechanical seals which is highly reliable but too expensive and complicate. In this paper, a simple lip seal system made of PTFE is adopted in designing of a compact rotary union. Using MARC, the behavior characteristics of lip seal are investigated for seal mounting process, and obtained variations of contact pressure distribution and contact width with interferences and fluid pressures. The results showed that contact width are increased with interference and pressure. The maximum contact pressure are also increased up to a certain interference and pressure, however, then decreased. The numerical methods and results can be applied in designing and performance improvement of lip seal adopted rotary union, and further extensive studies are required.