• Title/Summary/Keyword: Pressure Fluctuations

Search Result 378, Processing Time 0.027 seconds

EXPERIMENTAL INVESTIGATION OF PRESSURE FLUCTUATIONS ON THE BED OF FLIP BUCKET SPILLWAYS

  • KAVIANPOUR M.R.;POURHASAN M.A.
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.09a
    • /
    • pp.590-591
    • /
    • 2005
  • Hydrodynamic pressure fluctuations and their roles on the design of hydraulic structures has been the subject of many investigations. The studies showed that turbulent pressure fluctuations may cause serious damages to hydraulic structures. In case of high velocity flows, separation of flow from the boundary also causes the local pressure to drop and as a result, the resultant pressure fluctuations may trigger cavitation. Sever hydrodynamic pressures are also associated with the vibration of structures. Therefore, in this work, experiments were performed to determine the intensity of pressure fluctuations and their distribution along the bed of a ski-jump flip bucket. Experiments were completed on a physical model at the Institution of Water Research of Iran. The results consist of the statistical characteristics of pressure fluctuations, its maximum, minimum, and r.m.s values along the bed of the bucket. The spectral analysis of pressure fluctuations which is useful for the instability analysis of such structures is also provided. It is hoped that the present results will help the designer of such structures.

  • PDF

Relations of Near-Wall Streamwise Vortices to Wall Pressure Fluctuations in a Turbulent Boundary Layer (난류경계층내 주유동방향 와구조와 벽압력 변동간의 상관관계)

  • Seong, Hyeong-Jin;Kim, Jung-Nyeon;Choe, Jeong-Il
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1068-1076
    • /
    • 2001
  • The relations between wall pressure fluctuations and near-wall streamwise vortices are investigated in a spatially-developing turbulent boundary layer using the direct numerical simulation. The power spectra and two-point correlations of wall pressure fluctuations are presented to validate the present simulation. Emphasis is placed on the identification of the correlation between wall pressure fluctuations and streamwise vorticities. It is shown that wall pressure fluctuations are directly linked with the upstream streamwise vortices in the buffer region of the turbulent boundary layer. The maximum correlation occurs with the spanwise displacement from the location of wall pressure fluctuations. The conditionally-averaged vorticity field and the quadrant analysis of Reynolds shear stress indicate that the sweep events due to streamwise vortices generate positive wall pressure fluctuations, while negative wall pressure fluctuations are created beneath the ejection events and vortex cores. The instantaneous flow field and time records reveal that the rise of high wall pressure fluctuations coincide with the passages of the upstream streamwise vortices.

Experimental Investigations on Upper Part Load Vortex Rope Pressure Fluctuations in Francis Turbine Draft Tube

  • Nicolet, Christophe;Zobeiri, Amirreza;Maruzewski, Pierre;Avellan, Francois
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.179-190
    • /
    • 2011
  • The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The influence of outlet bubble cavitation and air injection is also investigated for low cavitation number. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

The Characteristics of Solid Mixing in a Vibrating Type Feeder and Pressure Fluctuation of Packing Materials for a Fluidized Bed Combustor (유동층 연소로에서 진동형 공급기의 고체혼합 및 충전물에 대한 압력요동 특성)

  • 김미영;김의식
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.3
    • /
    • pp.101-109
    • /
    • 1999
  • This study attempts to analyse the solid mixing in the feeder and the packing effect for pressure fluctuations in the fluidized bed. To study the mixing characteristics of solid in vibrating feeder for the stable operations of fluidized combustion, the system consisted of two groups of particles such that fine particles were located on the top of the coarse particles before vibratory mixing had started. The effects of packing materials on the pressure fluctuations in a fluidized bed were analysed by using a statistical method to interpret the behavior of fluidized bed. The experiments were carried out in a fluidized bed of 6.7cm-ID, and the experimental variables were particle sizes, of 115 to 1,015$\mu\textrm{m}$ in diameter and the multi-sized particles haying Rosin-Rammler and Gaussian distributions. The settled bed heights of particles to diameter ratios (L/D) were ranged from 0.5 to 2.0. And fluidizing of particles was carried out by air. The packing materials used were screen packing, and the properties of the pressure fluctuations in the fluidized bed were measured by a differential pressure transducer. The properties of the pressure fluctuations calculated were the mean, the standard deviation, and the major frequency of the power spectral density functions. From the characteristics of fluidizing, it was found that the standard deviation of pressure fluctuations could be effectively used to explain the fluidized phenomena, and the packing materials affected severely the properties of the pressure fluctuations. As a result, from the interpretation by spectral analysis, the effects of measuring radius of pressure fluctuations on standard deviation were constant in the case of the fluidized bed with and without packing materials. However, the effects of measuring the height of pressure fluctuations on standard deviations were linear increasing for the fluidized bed with packing materials, but were constant for the fluidized bed without packing materials at 4.5cm above the gas distributor. The major frequency of pressure fluctuations was found to be nearly independent of fluidized system. Also, the major frequency of pressure fluctuations decreased with increasing packing size, and it had maximum value at 10% of the packing amount.

  • PDF

Characteristics of Wall Pressure Fluctuations in a Turbulent Boundary Layer after Blowing or Suction (흡입/분사가 있는 난류 경계층 내 벽압력 변동의 특성)

  • Kim, Joong-Nyon;Kim, Kyoung-Youn;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.9
    • /
    • pp.1342-1350
    • /
    • 2003
  • A direct numerical simulation of a spatially-developing turbulent boundary layer is performed to examine the characteristics of wall pressure fluctuations after the sudden application of wall blowing or suction. The uniform blowing or suction is given by the wall-normal velocity through a spanwise slot at the wall. The response of wall pressure fluctuations to uniform blowing or suction is analyzed by computing the turbulence statistics and frequency spectra. It is found that wall pressure fluctuations are more affected by blowing than by suction. The large elongated structure of wall pressure fluctuations is observed near the maximum location of $(p_w)_{rms}$ for blowing. The convection velocities for blowing increase with increasing the streamwise location after the slot. For both blowing and suction, the small scale of wall pressure fluctuations reacts in a short downstream distance to the spanwise slot, whereas the large scale recovers slowly in a farther downstream.

Proper Orthogonal Decomposition of Pressure Fluctuations in Moonpool (문풀 내 압력 변동에 대한 POD 분석)

  • Lee, Sang Bong;Woo, Bum;Park, Dong Woo;Ahn, You Won;Go, Seok Cheon;Seo, Heung Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.6
    • /
    • pp.484-490
    • /
    • 2012
  • Experiments of circulating water channel and two dimensional numerical simulations were performed to investigate the fluctuating characteristics of pressure in moonpool. Based on the quasi-two dimensional characteristics of pressure fluctuations disclosed by the spatial cross-correlations, the numerical results showed qualitatively good agreement with experimental data. Proper orthogonal decomposition was employed to the spatial distributions of pressure fluctuations in order to find the first and second modes of fluctuations. The first mode of pressure fluctuations showed that the fluctuating characteristics of pressure were related to the behaviors of vortical structures. The velocity fluctuations were conditionally averaged to make clear that the coherent structures were responsible for the pressure fluctuations in moonpool.

Modeling of Turbulent Ventilation through an Opening due to Outdoor Pressure Fluctuations (개구부를 통한 외부압력 변동에 의한 난류환기 모델링)

  • Han, Hwa-Taik;Yom, Chol-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.121-127
    • /
    • 2008
  • This paper investigates the effects of outdoor pressure fluctuations on natural ventilation through an opening on a building envelope. The ventilation airflow rate depends on the magnitude and the period of the pressure fluctuations, the size of the opening relative to the space volume, and the resistance characteristics of the opening. Non-dimensional parameters have been derived, which determine indoor pressure responses due to outdoor pressure fluctuations. The flow regions are categorized into (1) synchronized region, (2) opening resistance region, and (3) transition region depending on the non-dimensional parameter derived. Pressure fluctuations and flow characteristics are investigated numerically using the 4th order Runge-Kutta method.

The Transient Response Characteristics of Compliant Coating to Pressure Fluctuations

  • Lee In-Won;Chun Ho-Hwan;Kim Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.533-544
    • /
    • 2006
  • The amplitude and phase lag of surface deformation were determined for a compliant coating under the action of turbulent pressure fluctuations. For this purpose, pressure fluctuations were measured experimentally. The amplitude and duration of coherent wave train of pressure fluctuations were investigated using digital filtration. The transient response was calculated for stabilization of forced oscillations of the coating in approximation of local deformation. The response of coating was analyzed with considerations of its inertial properties and limited duration of coherent harmonics action of pressure fluctuations. It is shown that a compliant coating interacts not with the whole spectrum of pressure fluctuations, but only with a frequency range near the first resonance. According to the analysis, with increasing elasticity modulus of the coating material E, deformation amplitude decreases as 1/E, and dimensionless velocity of the coating surface decreases as $1/\sqrt{E}$. For sufficiently hard coatings, deformation amplitude becomes smaller than the thickness of viscous sublayer, while surface velocity remains comparable to vertical velocity fluctuations of the flow.

Cross-Spectral Characteristics of Wall Pressure Fluctuations in Flows over a Backward-Facing Step (후향계단 주위의 난류 박리재부착유동에서의 벽압력변동의 통계적 특징)

  • Lee, In-Won;Sung, Hyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.2
    • /
    • pp.280-287
    • /
    • 2000
  • Laboratory measurements were made of wall pressure fluctuations in a separated and reattaching flow over a backward-facing step. An array of 32 microphones along the streamwise direction was utilized. Various statistical properties of pressure fluctuations were scrutinized. The main emphasis was placed on the flow inhomogeneity along the streamwise direction. One point statistics such as the streamwise distribution of rms pressure and autospectra were shown to be generally consistent with other studies. The coherences and wavenumber spectra in the streamwise directions were indicative of the presence of dual modes in pressure; one is the large-scale vortical structure in low frequency and the other is the boundary-layer-like decaying mode in high frequency.

The minimum fluidized velocity in fluidizing combustion bed of uniform particle size distribution system. (균일입자계 유동층연소로의 최소유동화 속도에 관한 연구)

  • 조병렬;김광렬
    • Journal of environmental and Sanitary engineering
    • /
    • v.11 no.1
    • /
    • pp.39-44
    • /
    • 1996
  • The pressure fluctuations in a gas-solid fluidized bed has been analysed using s statistical method interpreting fluidized 냥d behavior. The performing statistical a analysis of the pressure fluctuations in a fluidized bed of 6.7cm-ID. using uniform p particle size of 115 to $1015{\mu}m$ in diameter. The fluidized gas used air(velocity 0.1~1.2m/sec) at settled bed height to diameter ratios which is LlD=l.O. Then, the pressure fluctuations measured by DPT(differantial pressure transducer). The measuring characteristic values of pressure fluctuation were the mean value and standard value, and also, it has been found that the standard deviation of the pressure fluctuations can be effectively used to predict minimum fluidizing velocity and to explain the fluidized phenomena.

  • PDF