• Title/Summary/Keyword: Pressure Exponent

Search Result 96, Processing Time 0.023 seconds

The Origin of 1/t Pressure (1/t 배기의 근원)

  • Ha, Taekyun
    • Vacuum Magazine
    • /
    • v.1 no.1
    • /
    • pp.11-16
    • /
    • 2014
  • A variety of metal vacuum systems displays the celebrated 1/t pressure, namely, power-law dependence on time t, with the exponent close to unity, as to the origin of which there has been long-standing controversy. Here we propose a chemisorption model for water adsorbates, based on the argument for 2D fermion behavior of water adsorbed on a metal surface, and obtain analytically the power-law behavior of pressure with an exponent unity. Further, the model predicts that the pressure should depend on the temperature T according to $T^{1.5}$, which is indeed confirmed by our experiment.

Study on the Enhancement of Burning Rate of HTPB/AP Solid Propellants (HTPB/AP계 고체 추진제의 연소속도 증진 방안 연구)

  • Lee, Sunyoung;Ryu, Taeha;Hong, Myungpyo;Lee, Hyoungjin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.4
    • /
    • pp.21-27
    • /
    • 2017
  • In this paper, in order to control the burning rate and pressure exponent of HTPB/AP/Al based propellant for the improvement of performance, the effect of the size ratio of AP particles and various contents of Butacene as burning catalyst on combustion properties was investigated. In the propellant formulation with both $28{\mu}m$ Al of 23% and Butacene of 3%, the burning rate and pressure exponent were increased with increasing the contents of $9{\mu}m$ AP particles. And the burning rate was increased with increasing the contents of Butacene with showing the relatively low pressure exponent in the propellant containing Butacene. However, the significant variations of pressure exponent by contents of Butacene were not observed.

Derivation of work-hardening exponent using continuous indentation technique (연속압입시험법을 이용한 가공경화지수의 유도)

  • Jeon, Eun-Chae;Ahn, Jeong-Hoon;Kwon, Dong-Il
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.256-261
    • /
    • 2000
  • In this study, we derived work-hardening exponent using continuous indentation test technique. Continuous indentation test technique is a powerful method to evaluate mechanical properties, such as hardness, modulus, ${\sigma}-{\varepsilon}$ curves and etc. It has many merits conventional indentation test has. The relationship between true stress and mean contact pressure and between strain and indentation depth were derived. While the indenter pushes the materials, the region around the indenter is deflected elastically. It is called elastic deflection. And pile-up phenomenon related to plastic deformation around the indenter increased the contact depth, and sink-in phenomenon decreases. So we calibrated contact depth change by considering elastic deflection and pile-up/sink-in. Using calibrated contact depth we redefined the relationship between true stress and mean contact pressure and between strain and contact depth. Through these relationship we could derive work-hardening exponent by analyzing load-depth curves. And it showed good agreement with tensile test results.

  • PDF

Thrust modulation performance analysis of pintle-nozzle motor (핀틀 노즐형 로켓 모타의 추력 조절 성능에 관한 연구)

  • Kim, Joung-Keun;Park, Jong-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.392-398
    • /
    • 2009
  • Theoretical thrust equations for the diverse nozzle expansion condition were derived. By using the obtained thrust equations, parametric studies were carried out to estimate the effect of pressure exponent, minimum operation pressure, ambient pressure and extinguishment pressure on thrust modulation performance in pintle-nozzle solid rocket motors. Analysis results showed that thrust turndown ratio can be easily attained by small nozzle-throat area variation at high pressure exponent, low minimum operation pressure, high ambient pressure and high extinguishment pressure condition. At those conditions, the highest chamber pressure to obtain the intended thrust turndown ratio can be minimized.

Investigation of Self-Excited Combustion Instabilities in Two Different Combustion Systems

  • Seo, Seonghyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.7
    • /
    • pp.1246-1257
    • /
    • 2004
  • The objective of this paper is to characterize dynamic pressure traces measured at self-excited combustion instabilities occurring in two combustion systems of different hardware. One system is a model lean premixed gas turbine combustor and the other a fullscale bipropellant liquid rocket thrust chamber. It is commonly observed in both systems that low frequency waves at around 300㎐ are first excited at the onset of combustion instabilities and after a short duration, the instability mode becomes coupled to the resonant acoustic modes of the combustion chamber, the first longitudinal mode for the lean premixed combustor and the first tangential mode for the rocket thrust chamber. Low frequency waves seem to get excited at first since flame shows the higher heat release response on the lower frequency perturbations with the smaller phase differences between heat release and pressure fluctuations. Nonlinear time series analysis of pressure traces reveals that even stable combustion might have chaotic behavior with the positive maximum Lyapunov exponent. Also, pressure fluctuations under combustion instabilities reach a limit cycle or quasi-periodic oscillations at the very similar run conditions, which manifest that a self-excited high frequency instability has strong nonlinear characteristics.

Combustion Properties of PCP/Nitramine/AP Propellants (PCP/Nitramine/AP 기반 추진제의 연소 특성 연구)

  • Kim, Sung June
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.12-18
    • /
    • 2021
  • This study aimed at preparing the solid propellants featuring high pressure exponent available for throttleable rocket system development. The combustion properties of solid propellant based on PCP as a prepolymer were investigated with the different nitramine oxidizer, HMX and HNIW. As a main oxidizer, HNIW could deliver higher burning rate, specific impulse and flame temperature than HMX. In addition, the introduction of AP as a co-oxidizer in PCP/Nitramine propellants could enhance burning rate, specific impulse and flame temperature, showing the lower pressure exponent with increasing the content of fine-sized AP, total solids and plasticizer. Moreover, we examined the temperature sensitivity on burning rate of propellants between 150 psia and 2,500 psia.

The Prediction of Injection Distances for the Minimization of the Pressure Drop by Empirical Static Model in a Pulse Air Jet Bag Filter (충격기류식 여과집진기에서 경험모델을 이용한 최소압력손실의 분사거리 예측)

  • Suh, Jeong-Min;Park, Jeong-Ho;Lim, Woo-Taik
    • Journal of Environmental Science International
    • /
    • v.20 no.1
    • /
    • pp.25-34
    • /
    • 2011
  • The new empirical static model was constructed on the basis of dimension analysis to predict the pressure drop according to the operating conditions. The empirical static model consists of the initial pressure drop term (${\Delta}P_{initial}$) and the dust mass number term($N_{dust}=\frac{{\omega}_0{\nu}_f}{P_{pulse}t}$), and two parameters (dust deposit resistance and exponent of dust mass number) have been estimated from experimental data. The optimum injection distance was identified in the 64 experimental data at the fixed filtration velocity and pulse pressure. The dust deposit resistance ($K_d$), one of the empirical static model parameters got the minimum value at d=0.11m, at which the total pressure drop was minimized. The exponent of dust mass number was interpreted as the elasticity of pressure drop to the dust mass number. The elasticity of the unimodal behavior had also a maximum value at d=0.11m, at which the pressure drop increased most rapidly with the dust mass number. Additionally, the correlation coefficient for the new empirical static model was 0.914.

An Integrated Model of Static and Dynamic Measurement for Seat Discomfort

  • Daruis, Dian Darina Indah;Deros, Baba Md;Nor, Mohd Jailani Mohd;Hosseini, Mohammad
    • Industrial Engineering and Management Systems
    • /
    • v.10 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • A driver interacts directly with the car seat at all times. There are ergonomic characteristics that have to be followed to produce comfortable seats. However, most of previous researches focused on either static or dynamic condition only. In addition, research on car seat development is critically lacking although Malaysia herself manufactures its own car. Hence, this paper integrates objective measurements and subjective evaluation to predict seat discomfort. The objective measurements consider both static and dynamic conditions. Steven's psychophysics power law has been used in which after expansion; ${\psi}\;=\;a+b{\varphi}_s^{\alpha}+c{\varphi}_v^{\beta}$ where ${\psi}$ is discomfort sensation, ${\varphi}_s^{\alpha}$ is static modality with exponent ${\alpha}$ and ${\varphi}_v^{\beta}$ is dynamic modality with exponent ${\beta}$. The subjects in this study were local and the cars used were Malaysian made compact car. Static objective measurement was the seat pressure distribution measurement. The experiment was carried out on the driver's seat in a real car with the engine turned off. Meanwhile, the dynamic objective measurement was carried out in a moving car on real roads. During pressure distribution and vibration transmissibility experiments, subjects were requested to evaluate their discomfort levels using vehicle seat discomfort survey questionnaire together with body map diagram. From subjective evaluations, seat pressure and vibration dose values exponent for static modality ${\alpha}$ = 1.51 and exponent for dynamic modality ${\beta}$ = 1.24 were produced. The curves produced from the $E_{q.s}$ showed better $R_{-sq}$ values (99%) when both static and dynamic modalities were considered together as compared to Eq. with single modality only (static or dynamic only R-Sq = 95%). In conclusion, car seat discomfort prediction gives better result when seat development considered both static and dynamic modalities; and using ergonomic approach.

CFD Analysis on the Continuous and Variable Damping Characteristics of a Semi-Active Shock Absorber (반능동형 충격흡수기의 연속가변 감쇠특성에 대한 CFD 해석)

  • 윤준원
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.2
    • /
    • pp.101-108
    • /
    • 2004
  • Recently, a semi-active shock absorber has been taking interest because of its low cost and simple structure than the active one. CFD analysis has been conducted to investigate the continuous and variable damping characteristics of the semi-active shock absorber. Also, the flow resistance characteristics of a spool valve has been examined to identify individual parameters(namely, exponent and discharge coefficient) of pressure-flow rate relation needed for the accurate valve modeling. The flow field in the damping valve was simulated using the commercial code, CFX-5.3. The numerical results showed reasonable agreement with the experimental outputs. The pressure distribution with the variation of spool opening length and volume flow rate were discussed in detail. And the continuous and variable damping performance was found clearly. The individual parameters of spool valve were obtained as a function of orifice area. The exponent and discharge coefficient were fitted in with the first and the third polynomial respectively.

Study on the enhancement of burning rate of solid propellants (고체 추진제의 연소속도 증진 방안 연구)

  • Lee, Sunyoung;Hong, Myungpyo;Lee, Hyoungjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.508-512
    • /
    • 2017
  • In this study, we carried out the study on the combustion characteristics of HTPB/AP propellants with Al and Zr as fuel metal in order to develop the solid propellant with high burning rate. The major combustion characteristics of propellant were investigated as measuring of the burning rate and pressure exponent, and the HTPB/AP solid propellants were prepared with introducing Butacene as burning rate catalyst for the enhancement of burning rate. The propellant with Al and Zr was demonstrated the improvement of propellant performance and combustion characteristic.

  • PDF