• Title/Summary/Keyword: Pressure Drop.

Search Result 2,353, Processing Time 0.026 seconds

An Experimental Study on the Separating Effect of Pulverized Coal at Coal Nozzle with Coal Separator (석탄 노즐내 미분탄 분리장치의 입자 분리 효과에 관한 실험적 연구)

  • Kim, Hyuk-Je;Song, Si-Hong;Lee, Gun-Myung;Kim, Sang-Hyeun;Lee, Ik-Hyung
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.764-769
    • /
    • 2001
  • Recently, according to increase in the requirement of electric power, a thermoelectric power plant equipped with pulverized coal combustion system is highly valued, because coal has abundant deposits and a low price compared with others. For efficient use of coal fuel, most of plant makers are studying to improve combustion performance and flame stability, and reduce pollutant emission. One of these studies is how to control the profile of particle injection and velocity dependant on coal nozzle. Basically, a mixed flow of gas and particle in coal nozzle is required to have appropriate injection and concentration distribution at exit to achieve flame stability and low pollutant, but it is very difficult to obtain that without help of a coal separating device within nozzle. In this study, each distribution of air and coal flow rate is measured for the coal nozzle with coal separator developed by us. The coal concentration at exit is various according to inlet swirl values and positions of coal separator. Also pressure drop is measured for various operating conditions of this nozzle. From these results, we can find the separation characteristic of new developed coal separator, and select proper operation range of coal nozzle. When this coal nozzle is applied to actual plant, these investigations will be very useful to confirm the shape of coal separator to have efficient particle injection.

  • PDF

An Investigationi into the Dynamic Characteristics of Turbine and Gear Motor Type Flowmeters (터빈형과 기어모터형 유량계의 동특성 검토)

  • 예용택
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.3
    • /
    • pp.83-89
    • /
    • 2000
  • In hydraulic control system turbine and gear motor type flowmeters are widely used to measure the flow rate under steady flow conditions. With the recent growth of interest in the measurement of instantaneous values of unsteady flow rate the test of the transient response of these flowmeters are in some significance. however an unsteady flow rate mea-surment and its calibration method with a fast response and a high accuracy have not beendeveloped. In this research particularly the dynamic characteristics of turbine and gear motor type flowmeters are investigated experimentally and simple mathematical models are proposed. The measured flow rate waveforms are compared with those by remote instan-taneous flow rate measurement method(RIFM) which has been developed by author and used for calibration As the result of frequency response test gain and phase between the measured flow rate waveforms by turbine type flowmeter and those estimated by RIFM are in good agreement up to 70Hz For the gear motor type flowmeter th simulated results by a math-ematical model proposed here agree well with the experiment nearly up to 100Hz. Also it if sound that the pressure drop across the flowmeter is increased in proportion to the frequency of the flow rate variation in a high frequency region of more than 100Hz. It can be explained that the dealy of gear motor type flowmeter in high frequency regionis mainly attributed to a first order delay consisting of the inertia of gears and internal leakage of the gear motor.

  • PDF

Low-noise Design of Passage of Idle Speed Control Actuator In Automotive Engines Using Scaling Laws for Noise Prediction (소음예측 비례식을 이용한 자동차 엔진 공회전 속도 제어 장치 유로의 저소음 설계)

  • Cheong, Cheol-Ung;Kim, Jae-Hyun;Kim, Sung-Tae;Park, Yong-Hwan;Lee, Soo-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.8
    • /
    • pp.683-692
    • /
    • 2007
  • Recently, plastic products in air-intake parts of automotive engines have become very popular due to advantages that include reduced weight, constricted cost, and lower intake air temperature. However, flow-induced noise in air-intake parts becomes a more serious problem for plastic intake-manifolds than for conventional aluminum-made manifolds. This is due to the fact that plastic manifolds transmit more noise owing to their lower material density. Internal aerodynamic noise from an idle speed control actuator(ISA) is qualitatively analyzed by using a scaling law, which is expressed with some flow parameters such as pressure drop, maximum flow velocity, and turbulence kinetic energy. First, basic flow characteristics through ISA passage are identified with the flow predictions obtained by applying computational fluid dynamics techniques. Then, the effects on ISA passage noise of each design factors including the duct turning shape and vane geometries are assessed. Based on these results, the preliminary low noise design for the ISA passage are proposed. The current method for the prediction of internal aerodynamic noise consists of the steady CFD and the scaling laws for the noise prediction. This combination is most cost-effective, compared with other methods, and therefore is believed to be suited for the preliminary design tool in the industrial field.

An Experimental Investigation on the Airside Performance of Fin-and-Tube Heat Exchangers Having Sinusoidal Wave Fins (사인 웨이브 휜-관 열교환기의 공기측 성능에 관한 실험연구)

  • Kim, Nae-Hyun;Cho, Jin-Pyo;Yoon, Baek
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-367
    • /
    • 2004
  • The heat transfer and friction characteristics of the heat exchangers having sinusoidal wave fins were experimentally investigated. Twenty-nine samples having different waffle heights (1.5 mm and 2.0 m), fin pitches (1.3mm to 1.7mm) and tube rows (one to three) were tested. Focus was given to the effect of the waffle configuration (herringbone or sinusoidal) on the heat transfer and friction characteristics. Results show that the sinusoidal wave geometry provides higher heat transfer coefficients and friction factors than the herringbone wave geometry, and the difference increases as the number of row increases. The i/f ratios of the herringbone wave geometry, however, are larger than those of the sinusoidal wave geometry. Compared to the herringbone wave geometry, the sinusoidal wave geometry yielded a weak row effect, which suggests a superior heat transfer performance at the fully developed flow region. Possible explanation is provided considering the flow characteristics in wavy channels. Within the present geometric range, the effect of the waffle height on the heat transfer coefficient was not prominent. The effect of the fin pitch was also negligible. Existing correlations highly overpredicted both the heat transfer coefficients and friction factors. A new correlation was developed using the present data.

Performance of Nano Ceramic Filter for the Removal of Ultra Fine Particles (초미세입자 제거를 위한 나노세라믹 필터의 성능 평가)

  • Kim, Jong-Won;Ahn, Young-Chull;Yi, Byeong-Kwon;Jeong, Hyeon-Jae
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.751-756
    • /
    • 2009
  • In the perspective of saving energy in buildings, the high performance of insulation and air tightness for improving the heating and the cooling efficiency, has brought economically positive effects. However, these building energy saving technologies cause the lack of ventilation, which is the direct cause of increasing the indoor contaminants, and is also very harmful to the residents, because they spend over 90% of their time indoors. Therefore, the ventilation is important to keep the indoor environment clean and it can also save the energy consumption. In this study, a HEPA type nano ceramic filter is designed as a passive ventilation system to collect airborne particles and to supply fresh outdoor air. The double layer filter, which has $30{\mu}m$ in diameter at the conditions of 10wt% of concentration and 3kV/cm of the electric intensity, is produced by electrospinning. The filtration coating technology is confirmed in the solution with $SiO_2$ nano particles using polymer nano fibers. Also double layer filters are coated with $SiO_2$ nano particles and finally the porous construction materials are made by sintering in the electric furnace at $200{\sim}1400^{\circ}C$. The efficiency is measured 96.67% at the particle size of $0.31{\mu}m$, which is slightly lower than HEPA filter. However the efficiency is turned out to be sufficient.

  • PDF

Measurements of Turbulent Flow In a$6\times{6}$ Rod Bundle with Spacer Grids (지지격자를 갖는 $6\times{6}$ 봉다발에서의 난류유동 측정)

  • Yang, Sun-Kyu;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.162-174
    • /
    • 1996
  • The local hydraulic characteristics in a single phase flow of a 6$\times$6 rod bundle with neighboring different spacer grids were measured by using a LDV(Laser Doppler Velocimeter) system. 6$\times$6 rod bundle is formed by two 3$\times$6 rod bundles with different spacer grids. The objective of this study in a rod bundle is to investigate the thermal-hydraulic interactions between different spacer grids with different configurations and resistance. By using a LDV system, the velocity and turbulent intensity in axial and horizontal directions ore measured. Pressure drop measurements ore also performed to evaluate the loss coefficient for the spacer grid and the friction factor for rod bundles. Implications concerning thermal mining due to spacer grids were investigated based on the hydraulic test results. Swirl factor, which is assumed as a qualitative criteria for DNB(departure from nucleate boiling), was defined and estimated from the horizontal velocity result.

  • PDF

Multi-phase Flow Modeling of Vapor Explosion Propagation (증기폭발 전파과정 해석을 위한 다상유동 모델 개발)

  • Park, I. K.;Park, G. C.;K. H. Bang
    • Nuclear Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.103-117
    • /
    • 1996
  • A mathematical model of vapor explosion propagation is presented. The model predict two-dimensional, transient flow fields and energies of the four fluid phases of melt drop, fragmented debris, liquid coolant and vapor coolant by solving a set of governing equations with the relevant constitutive relations. These relations include melt fragmentation, coolant-phase-change, and heat and momentum exchange models. To allow thermodynamic non-equilibrium between the coolant liquid and vapor, an equation of state for oater is uniquely formulated. A multiphase code, TRACER, has been developed based on this mathematical formulation. A set of base calculations for tin/water explosions show that the model predicts the explosion propagation speed and peak pressure in a reasonable degree although the quantitative agreement relies strongly on the parameters in the constitutive relations. A set of calculations for sensitivity studies on these parameters have identified the important initial conditions and relations. These are melt fragmentation rate, momentum exchange function, heat transfer function and coolant phase change model as well as local vapor fractions and fuel fractions.

  • PDF

Effect of Bed Insert Geometry on CO Conversion of WGS Catalyst in a Fluidized Bed Reactor for SEWGS Process (SEWGS 공정을 위한 유동층 반응기에서 내부 삽입물의 모양이 WGS 촉매의 CO 전환율에 미치는 영향)

  • Ryu, Hojung;Kim, Hana;Lee, Dongho;Jin, Gyoungtae;Park, Youngcheol;Jo, Sungho
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.535-542
    • /
    • 2013
  • To enhance the performance of SEWGS system by holding the WGS catalyst in a SEWGS reactor using bed inserts, effect of bed insert geometry on CO conversion of WGS catalyst was measured and investigated. Small scale fluidized bed reactor was used as experimental apparatus and tablet shaped WGS catalyst and sand particle were used as bed materials. The cylinder type and the spring type bed inserts were used to hold the WGS catalysts. The CO conversion of WGS catalyst with the change of steam/CO ratio was determined based on the exit gas analysis. Moreover, gas flow direction was confirmed by bed pressure drop measurement for each case. The measured CO conversion using the bed inserts showed high value comparable to previous results even though at low catalyst content. Most of input gas flowed through the bed center side when we charged tablet type catalyst into the cylinder type bed insert and this can cause low $CO_2$ capture efficiency because the possibility of contact between input gas and $CO_2$ absorbent is low in this case. However, the spring type bed insert showed good reactivity and good distribution of gas, and therefore, the spring type bed insert was selected as the best bed insert for SEWGS process.

Experimental Study on the Gasification Characteristics of Liquefied Gas Vaporizer with Various Shape (다양한 형상을 갖는 액화가스 기화기의 기화특성에 관한 실험적 연구)

  • Lee Yong-Hun;Lee Sang-Chul;Jeong Hyo-Min;Chung Han-Shik
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2006
  • This paper was studied for optimum design of the used vaporizer at a satellite station. Generally, the cold air is created by temperature drop on the vaporizer surface. In addition, the frost creates ice deposit layer, therefore, heat transfer on vaporizer decreases into the adiabatic condition. By this reason, recent vaporizer system is installed as parallel type, and it takes three times of vaporizer capacity. But this vaporizer system requires much installation costs and restricted by some space. It is very important to solve this problem. This study paper is regarding $LN_2$ vaporizer where the utilization increases recently. There are three variable conditions which are used in this study research. First, fin lengths of 4000mm, 6000mm, 8000mm and 0, 4, 8 fin types were applied rut each vaporizer. Second, we applied four season condition which consist of humidity, temperature and air velocity to the experimental environment. Finally, pressure was applied to get flow rate during experiment. This paper objective is to propose vaporizer type and length data for best performance of vaporizer through experiment.

  • PDF

A Numerical Study on Various Energy and Environmental System (II) (에너지${\cdot}$환경 제반 시스템에 관한 수치해석적 연구(II))

  • Jang D. S.;Park B. S.;Kim B. S.;Lee E. J.;Song W. Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1996.05a
    • /
    • pp.58-67
    • /
    • 1996
  • This paper describes some computational results of various energy and environmental systems using Patankar's SIMPLE method. The specific topics handled in this study are jet bubbling reactor for flue gas desulfurization, cyclone-type afterburner for incineration, 200m tall stack for 500 MW electric power generation, double skin and heat storage systems of building energy saving for the utilization of solar heating, finally turbulent combustion systems with liquid droplet or pulverized coal particle. A control-volume based finite-difference method with the power-law scheme is employed for discretization. The pressure-velocity coupling is resolved by the use of the revised version of SIMPLE, that is, SIMPLEC. Reynolds stresses are closed using the standard $k-{\varepsilon}$ and RNG $k-{\varepsilon}$ models. Two-phase turbulent combustion of liquid drop or pulverized coal particle is modeled using locally-homogeneous, gas-phase, eddy breakup model. However simple approximate models are incorporated for the modeling of the second phase slip and retardation of ignition without consideration of any detailed particle behavior. Some important results are presented and discussed in a brief note. Especially, in order to make uniform exit flow for the jet bubbling reactor, a well-designed structure of distributor is needed. Further, the aspect ratio in the double skin system appears to be one of important factors to give rise to the visible change of the induced air flow rate. The computational tool employed in this study, in general, appears as a viable method for the design of various engineering system of interest.

  • PDF