• Title/Summary/Keyword: Pressure Drop Coefficient

Search Result 383, Processing Time 0.026 seconds

Study on $CO_2$ Evaporation Heat Transfer and Pressure Drop in a Horizontal Smooth Tube (수평 평활관내 $CO_2$ 증발열전달 및 압력강하에 관한 연구)

  • Lee, Sang-Jae;Choi, Jun-Young;Lee, Jae-Heon;Kwon, Young-Chul
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.9
    • /
    • pp.615-621
    • /
    • 2007
  • Experimental study on the heat transfer characteristics of $CO_2$ in a horizontal smooth tube was carried out to investigate the heat transfer coefficient and pressure drop during evaporation of $CO_2$. The experiment apparatus consisted of a test section, a DC power supply, a heater, a chiller, a mass flow meter, a pump and a measurement system. Experiment was conducted for various mass fluxes ($200{\sim}1200kg/m^2s$), heat flukes ($10{\sim}100kW/m^2$) and saturation temperatures (-5, 0, $5^{\circ}C$). With increasing the heat flux, the evaporation heat transfer coefficient increased. But the variation of the heat transfer coefficient on the increase of the mass flux was not large. And the significantly drops of the heat transfer coefficient was observed at any heat flux and mass flux because of the change of the flow pattern in the tube. With increasing the saturation temperature, the heat transfer coefficient increased due to the promotion of a nucleate boiling. The measured pressure drop during evaporation increased with increasing the mass flux and decreasing the saturation temperature.

Numerical Analysis on Heat Transfer Characteristics and Pressure Drop in Plate Heat Exchanger (판형열교환기의 열전달특성 및 압력강하에 관한 해석적 연구)

  • Kim, K.R.;Kim, I.G.;Yim, C.S.
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.2
    • /
    • pp.19-26
    • /
    • 2002
  • This study aims at numerically analyzing on heat transfer the characteristics and pressure drop of plate heat exchanger(PHE) using the Phoenics 3.1 VR Editor for the standard k-$\varepsilon$ model. Computations have been carried out for a range of chevron angle from $30^{\circ}$ to $60^{\circ}$, inlet velocity from 0.03m/s to 0.63m/s and the height of corrugation from 0.0045m to 0.0060m. The results show that both of heat transfer performance and pressure drop increase as chevron angle increases. This is because higher troughs produce higher turbulence and a higher heat transfer coefficient in the liquids flowing between the plates. As inlet velocity from 0.03m/s to 0.63m/s increases, heat transfer performance and pressure drop increase parabolically. As the height of corrugation increases, both of heat transfer performance and pressure drop decrease with the decrease of velocity. And the pressure drop decreases and the friction factor increases as the height of corrugation increases.

An Experimental Study on Heat Transfer and Pressure Drop Characteristics of Carbon Dioxide During Gas Cooling Process in a Hellically Coiled Tube

  • Oh, Hoo-Kyu;Son, Chang-Hyo;Yu, Tae-Geun;Kim, Dae-Hui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.263-271
    • /
    • 2007
  • The heat transfer coefficient and pressure drop during 9as cooling process of $CO_2$ (R744) in a helically coiled copper tube with the inner diameter of 4.55 mm and outer diameter of 6.35 mm were investigated experimentally. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter a pre-heater and a helically coiled type gas cooler (test section). The refrigerant mass fluxes are varied from 200 to $800kg/m^2s$ and the inlet pressures of gas cooler are 7.5 to 10.0 MPa. The heat transfer coefficients of $CO_2$ in a helically coiled tube are higher than those in a horizontal tube. The Pressure drop of $CO_2$ in the gas cooler shows a relatively good agreement with those predicted by Ito's correlation developed for single-phase in a helically coiled tube. The local heat transfer coefficient of $CO_2$ agrees well with the correlation by Pitla et al. However. at the region near pseudo-critical temperature. the experiments indicate higher values than the Pitla et al correlation. Therefore, various experiments in helically coiled tubes have to be conducted and it is necessary to develop the reliable and accurate prediction determining the heat transfer and pressure drop of $CO_2$ in a helically coiled tube.

An Experimental Study on Condensation Characteristics of Slit Fin-tube Heat Exchanger Using Alternative Refrigerants, R407C and R410A (대체냉매 R407C 및 R410A를 이용한 슬릿휜-관 열교환기의 응축특성에 관한 연구)

  • 전창덕;장경근;강신형;이진호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.9
    • /
    • pp.706-716
    • /
    • 2002
  • R410A and R407C are considered to be alternative refrigerants to R22 for the air-conditioners. Experimental investigation is made to study the condensation heat transfer characteristics of slit fin-tube heat exchanger using alternative refrigerants R410A and R407C. R407C, a non-azeotropic refrigerant mixture, exhibited a quite different condensation phenomenon from those of R22 and R410A and its condensation heat transfer coefficient was much lower than that of R22 and R410A. Between the R22 and R410A, the condensation heat transfer coefficient of R410A, near-azeotropic refrigerant mixture, was a little higher than that of R22. R410A also showed the lowest condensation pressure drop across the test section. For all refrigerants, the condensation heat transfer coefficient and pressure drop increase as the mass flux increases.

Heat Transfer and Pressure Drop Characteristics of Supercritical $CO_2$ in a Helically Coiled Tube (초임계 $CO_2$의 헬리컬 코일관 내 열선단과 압력강하 특성)

  • Yu, Tae-Guen;Kim, Dae-Hui;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.353-358
    • /
    • 2005
  • The heat transfer and pressure drop of supercritical $CO_2$ cooled in a helically coiled tube was investigated experimentally. The experiments were conducted without oil in the refrigerant loop. The experimental apparatus of the refrigerant loop consist of receiver, a variable speed pump, a mass flowmeter, a pre-heater, a gas cooler(test section) and an isothermal tank. The test section is a helically coiled tube in tube counter flow heat exchanger with $CO_2$ flowed inside the inner tube and coolant( water) flowed along the outside annular passage, It was made of it copper tube with the inner diameter of 4.55[mm]. the outer diameter of 6.35 [mm] and length of 10000 [mm]. The refrigerant mass fluxes were $200^{\sim}600$ [kg/m2s] and the inlet pressure of gas cooler varied from 7.5 [MPa] to 10.0 [MPa]. The main results are summarized as follows : The heat transfer coefficient of supercritical $CO_2$ increases, as the cooling pressure of gas cooler decreases. And the heat transfer coefficient increases with the increase of the refrigerant mass flux. The pressure drop decreases in increase of the gas cooler pressure and increases with increase the refrigerant mass flux.

  • PDF

Experimental study on the performance of a brazed plate heat exchanger (용접식 판형 열교환기의 성능에 관한 실험적 연구)

  • Kim, Jong-Ha;Yun, Jae-Ho;Kwon, Oh-Kyung;Kim, Jong-Hun;Ryu, Hae-Sung;Lee, Chang-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.477-482
    • /
    • 2001
  • An experimental study on the performance evaluation of a brazed plate heat-exchanger with 10RT of normal cooling capacity has been carried out. In the present study, a brazed type plate heat exchanger was tested at a chevron angle $25^{\circ}$ with refrigerant R-22. Mass flux was ranged from $23\;to\;58kg/m^{2}s$ in condensation, and from $22\;to\;53kg/m^{2}s$ in evaporation. The heat transfer coefficient and pressure drop increased with the mass flux increases. The water side pressure drop increased with the cooling water flow rate and chilled water flow rate increases, while mass flux has little affect. It is also shown that the system performance can be improved by enlarging condensation heat transfer area.

  • PDF

Pressure Drop and Heat Transfer Characteristics of Internal Flow of the Rectangular Tube for Automobile Heat Exchanger (차량용 열교환기 사각관 내부 흐름에서 압력강하 및 열전달 특성)

  • Kang, Hie-Chan;Jun, Gil-Woong;Kim, Kwang-Il
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.489-492
    • /
    • 2006
  • The present work was performed to investigate the thermal and hydraulic characteristics of flow inside the plain and turbulator flat tubes for the automobile application. The pressure drop and heat transfer coefficient at laminar, transition and turbulent regimes were studied experimentally and numerically. The flow transition was confirmed by flow visualization and quantitative data. It is proposed equations for the friction and heat transfer coefficient in the fully developed laminar flow inside rectangular tube as function of aspect ratio.

  • PDF

NUMERICAL STUDY ON HEAT TRANSFER CHARACTERISTICS FOR RING TYPE HEAT EXCHANGER (링형 열교환기의 열전달특성에 관한 수치적 연구)

  • Dong, W.R.;Choi, H.K.;Yoo, G.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.143-147
    • /
    • 2008
  • Numerical analysis is performed to find flow and heat transfer characteristics for ring type heat exchanger. 3-D numerical predictions are carried out for the ring type heat exchanger system with Reynolds number varying in the range of 1,000 and 10,000. From the prediction, streamwise velocity, pressure drop, flow rate and heat transfer coefficient are analyzed. It is also found that characteristics of pressure drop and heat transfer generally follow well proportional variations of Re$m^$for the wide range of Reynolds number considered in this study.

  • PDF

Effects of Oil Supply into Inner Film on Performance of Floating-Ring Journal Bearing (내측유막으로의 공급유량이 플로팅 링 저어널베어링의 성능에 미치는 영향)

  • 김종수;최상규;유광택
    • Tribology and Lubricants
    • /
    • v.15 no.1
    • /
    • pp.98-107
    • /
    • 1999
  • In this work the effect of pressure drop at inner film due to centrifugal forces acting on the lubricating fluid is investigated for static and dynamic characteristics of floating ring journal bearing. The momentum effect of oil supply into a inner film through oil feeding holes of floating ring on the bearing performance is also studied. It is compared the pressure drop effects and the momentum effect of oil supply into a inner film fur all bearing performance parameters. It is shown that some performance of floating ring bearings can be controled by the momentum of oil supply into a inner film.

Measurement of effective thermal conductivity and permeability on aluminum foam metal (알루미늄 발포금속의 유효열전도도와 침투율의 측정)

  • 백진욱;강병하;김서영;현재민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.185-192
    • /
    • 1999
  • Effective thermal conductivities and pressure-drop-related properties of aluminum foam metals have been measured. The effects of porosity and cell size in the aluminum foam metal are investigated in detail. The porosity of the foam metal, considered in the present study, varies from 0.89 to 0.96 and the cell size from 0.65㎜ to 2.5㎜. The effective thermal conductivity is evaluated by comparing the temperature gradient of the foam metal with that of the thermal conductivity-known material. The pressure drop in the foam metal is measured by a highly precise electric manometer while air is flowing through the aluminum foam metal in the channel. The results obtained indicate that the effective thermal conductivities are found to be increased with a decrease in the porosity while the effective thermal conductivities ire little affected by the cell size at a fixed porosity. However, the pressure drop is strongly affected by the cell size as well as the porosity. It is seen that the pressure drop is increased as the cell size becomes smaller, as expected. The minimum pressure drop is obtained in the porosity 0.94 at a fixed cell size. A new correlation of the pressure drop is proposed based on the permeability and Ergun's coefficient for the aluminum foam metal.

  • PDF