• Title/Summary/Keyword: Pressure Drag

Search Result 501, Processing Time 0.024 seconds

Friction Characteristics of automotive friction materials containing different metallic fibers against Al-MMC and cast iron disk specimens (자동차용 마찰재에 사용되는 금속섬유의 종류에 따른 마찰특성의 변화에 관한 연구)

  • Lee, Jin-Soo;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.255-264
    • /
    • 1999
  • Friction characteristics of automotive friction materials containing different metallic fibers rubbing against Al-MMC and cast iron disk specimens have been studied. Friction materials containing aluminum, copper or low steel carbon fiber were tested. Friction tests were composed of three different phases to investigate the effect of temperature, pressure, speed, and drag time. The results showed that the friction material containing Al fibers has lower friction force and wear amount than the others with Cu or Steel fiber. On the other hand, the wear of friction material was severe in the case of using Al-MMC rotors. These results showed that the thermal decomposition of solid lubricants (and organic components), formation of transfer layer, and SiC particles in the AI-MMC rotor play crucial roles in determining the friction characteristics.

  • PDF

Effect of the Microstructure of Gray Cast Iron Disk on Friction Characteristics (자동차용 브레이크 로터의 재료로 사용되는 회주철의 미세구조에 따른 마찰특성에 관한 연구)

  • Cho, Min-Hyung;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.240-246
    • /
    • 1999
  • The effect of microstructure of gray cast iron disk was investigated by using a pad-on-disk type friction tester. Three different rotors with different microstructures were studied in this work. They showed a pearlitic matrix, a ferritic matrix, and a martensitic structure, respectively. All of them have graphite flakes in common. Drag tests at different pressure and speed conditions were carried out to study friction stability, temperature rise during drags. The rotor containing pearlitic matrix showed lower values of friction coefficient, small amount of temperature rise, and less fading. The results showed that gray cast iron disk containing pearlitic matrix has good friction characteristics.

  • PDF

Design and Flow Analysis on the 1kW Class Horizontal Axis Wind Turbine Rotor Blade for Use in Southwest Islands Region (서남권 도서지역에 적합한 1kW급 수평축 풍력터빈 로터 블레이드 설계 및 유동해석)

  • Lee, Jun-Yong;Choi, Nak-Joon;Yoon, Han-Yong;Cho, Young-Do
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.3
    • /
    • pp.5-11
    • /
    • 2012
  • This study is to develop a 1kW-class horizontal axis wind turbine(HAWT) rotor blade which will be applicable to relatively low wind speed regions in southwest islands in Korea. Shape design of 1kW-class small wind turbine rotor blade is carried out using a blade profile with relatively high lift to drag ratio by blade element momentum theory(BEMT). Aerodynamic analysis on the newly designed rotor blade is performed with the variation of tip speed ratio. Power coefficient and pressure coefficient of the designed rotor blade are investigated according to tip speed ratio.

Galloping analysis of roof structures

  • Zhang, Xiangting;Zhang, Ray Ruichong
    • Wind and Structures
    • /
    • v.6 no.2
    • /
    • pp.141-150
    • /
    • 2003
  • This paper presents galloping analysis of multiple-degree-of-freedom (MDOF) structural roofs with multiple orientations. Instead of using drag and lift coefficients and/or their combined coefficient in traditional galloping analysis for slender structures, this study uses wind pressure coefficients for wind force representation on each and every different orientation roof, facilitating the galloping analysis of multiple-orientation roof structures. In the study, influences of nonlinear aerodynamic forces are considered. An energy-based equivalent technique, together with the modal analysis, is used to solve the nonlinear MDOF vibration equations. The critical wind speed for galloping of roof structures is derived, which is then applied to galloping analysis of roofs of a stadium and a high-rise building in China. With the aid of various experimental results obtained in pertinent research, this study also shows that consideration of nonlinear aerodynamic forces in galloping analysis generally increases the critical wind speed, thus enhancing aerodynamic stability of structures.

Numerical characterization of real railway overhead cables

  • Sanchez-Rebollo, Cristina;Velez, Enrique;Jimenez-Octavio, Jesus R.
    • Wind and Structures
    • /
    • v.21 no.1
    • /
    • pp.105-117
    • /
    • 2015
  • This paper presents a numerical characterization of real railway overhead cables based on computational fluid dynamics (CFD). Complete analysis of the aerodynamic coefficients of this type of cross section yields a more accurate modelling of pressure loads acting on moving cables than provided by current approaches used in design. Thus, the characterization of certain selected commercial cables is carried out in this work for different wind speeds and angles of attack. The aerodynamic lift and drag coefficients are herein determined for two different types of grooved cables, which establish a relevant data set for the railway industry. Finally, the influence of this characterization on the fluid-structure interaction (FSI) is proved, the static behavior of a catenary system is studied by means of the finite element method (FEM) in order to analyze the effect of different wind angles of attack on the stiffness distribution.

A Fundamental Study on Wind Turbine Model of the Wind Power Generation (풍력발전용 모형터빈에 관한 기초적연구)

  • Kim, J.H.;Nam, C.D.;Kim, Y.H.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.1014-1019
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected. A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental result. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is concluded that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

A Basis Study on Optimum Design of Air Turbine for Wind Power Generation (풍력발전용 공기터빈의 최적설계에 관한 기초 연구)

  • 김정환;김범석;김윤해;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.5
    • /
    • pp.1091-1097
    • /
    • 2001
  • A numerical investigation was performed to determine the effect of airfoil on the optimum flap height using NACA 00XX and 44XX airfoils. The six flaps which have 0.5% chord height difference were selected . A Navier-Stokes code, FLUENT, was used to calculate the flow field of the airfoil. The code was first tested as a benchmark by modelling flow around a NACA 4412 airfoil. Predictions of local pressure coefficients are found to be in good agreement with the result of the experimental results. For every NACA 00XX and 44XX airfoil, flap heights ranging from 0.0% to 2.5% chord were changed by 0.5% chord interval and their effects were also studied. Representative results from each case are presented graphically and discussed. It is conclued that this initial approach gives an idea for the future development of the wind turbine optimum design.

  • PDF

Numerical analysis of flow field around an automobile with variation of yaw angles (측풍의 편향각 변화에 따른 자동차 주위의 유동해석)

  • Kang D. M.;Jung Y. R.;Park W. G.;Ha S. D.
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • This paper describes the flow field analysis of an automobile with crosswind effects of 15°, 30° 45° and 60° of yaw angles. The governing equations of the 3-D incompressible Navier-Stokes equations are solved by the iterative time marching scheme. The Chimera grid technique has been applied to efficiently simulate the flow around the side-view mirror. The computated surface pressure coefficients have been compared with experimental results and a good agreement has been achieved. The A- and C-pillar vortex and other flow phenomena around the ground vehicle are evidently shown. The variation of aerodynamic coefficients of drag, lift, side force and moments with respect to yaw angle is systematically studied.

  • PDF

Prediction of the Reflood Phenomena with modifications in RELAP5/MOD3.1

  • Jeong, Hae-Yong;No, Hee-Cheon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.409-414
    • /
    • 1997
  • Reflood model in RELAP5/MOD3.1 are modified to improve the unrealistic prediction results of the model. In the new method, the modified Zuber pool boiling critical heat flux (CHF) correlation is adopted. The reflood drop size is characterized by the use of We=1.5 and the minimum drop size of 0.0007 m for $p^{*}\;{\leq}\;0.025$. To describe the wall to vapor heat transfer at low pressure and low flow condition, the Webb-Chen correlation is utilized . The suggested method has been verified through the simulations of the Lehigh University rod bundle reflood tests. Through sensitivity study it is shown that the effect of drag coefficients is dominant in the reflood model. It is proved that the present modifications result in much more improved quench behavior and accurate wan and vapor temperature predictions.

  • PDF

A Comparative Study on Decision of The In-Plane Permeability of the Geotextile (Geotexitile의 평면투수성 결정에 관한 비교연구)

  • 권우남;박희명;이상호
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.31 no.2
    • /
    • pp.135-143
    • /
    • 1989
  • The in-plane permeabilities for domestic geotextile products are calculated by some theoretical formulas and compared with them obtained by experiments to examine the suitability of those formulas. The results obtained are as follows: 1. It appears that the diameter of the filament yarn is larger and more uniform than that of the staple fiber according to the microscopic analysis on the geotextile 2. The in-plane permeability of the geotextile shows that the theoretical values by drag and channel theory is close to the experimental ones. 3. The porosity of the geotextile is hardly influenced by normal pressure. 4. In the case of the same thickness of the geotextile the side surface area of the filament yarn is larger than that of the staple fiber. 5. The capillary height of the geotextile shows that the theoretical values is close to the experimental ones and thick geotextile is higher than thin geotextile.

  • PDF