• Title/Summary/Keyword: Pressure Drag

Search Result 499, Processing Time 0.024 seconds

초공동 수중운동체 캐비테이터의 항력과 양력특성에 관한 수치해석적 연구 (Numerical Investigation of Drag and Lift Characteristics of Cavitator of Supercavitating Underwater Vehicle)

  • 강병윤;장세연;강신형
    • 대한기계학회논문집B
    • /
    • 제38권10호
    • /
    • pp.797-805
    • /
    • 2014
  • 본 연구의 목적은 해수 흡입구를 고려한 초공동 수중운동체 캐비테이터의 항력과 양력특성 및 해수 흡입유로의 입구에서 압력손실에 대해 예측하는 것이다. 흡입구 직경과 유로에서의 속도, 흡입구의 곡률반경 및 캐비테이터의 받음각이 미치는 영향에 대해 유동해석을 수행하였다. 연구 결과 직경비가 커지면, 항력계수와 압력손실계수가 감소하며, 속도비가 증가할 때 항력계수와 양력계수는 감소하고 압력손실계수는 증가한다. 해수 흡입구에 곡률을 주면 항력계수와 양력계수에는 영향을 미치지 않지만, 압력손실계수가 크게 감소한다. 캐비테이터의 받음각은 항력계수와 압력손실계수에 미소한 영향만을 주나, 양력계수를 크게 변화시킨다. 초공동 수중운동체 설계 시 본 연구 결과를 반영할 수 있다.

A numerical and experimental study on the drag of a cavitating underwater vehicle in cavitation tunnel

  • Choi, Jung-Kyu;Ahn, Byoung-Kwon;Kim, Hyoung-Tae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제7권5호
    • /
    • pp.888-905
    • /
    • 2015
  • For Super-Cavitating Underwater Vehicles (SCUV), the numerical analyses and experiments in a large cavitation tunnel are carried out at relatively large Reynolds numbers. The numerical results agree well with experiments and the drag coefficient of SCUV is rarely changed by the Reynolds number. As the cavitation number is decreased, the cavity occurs and grows, the cavitator drag decreases and the body drag is affected by the degree of covering the body with the cavity. The tunnel effects, i.e. the blockage and the friction pressure drop of the tunnel, on the drag and the cavitation of SCUV are examined from the numerical results in between the tunnel and unbounded flows. In the tunnel, a minimum cavitation number exists and the drag of SCUV appears larger than that in unbounded flow. When the super-cavity covers the entire body, the friction drag almost disappears and the total drag of SCUV can be regarded as the pressure drag of cavitator.

엔진화염에 따른 천음속 유도탄의 항력 평가 (Drag Assessment of Transonic Missile due to Engine Plume)

  • 안창수;정석영
    • 한국전산유체공학회지
    • /
    • 제8권3호
    • /
    • pp.7-11
    • /
    • 2003
  • Accurate assessment of the effect of jet plume on the boattail pressure drag of transonic airbreathing missiles is very important to reduce drag and to satisfy the flight range and the required maneuver. Numerical results of drag analysis for boattail and base pressures due to jet plume are presented considering the turbulence modeling. Drag assessment due to the size of jet plume, the conditions of the exhaust gas, the configurations of the boattail, and transonic mach numbers is included.

Circular cylinder drag reduction using piezoelectric actuators

  • Orazi, Matteo;Lasagna, Davide;Iuso, Gaetano
    • Advances in aircraft and spacecraft science
    • /
    • 제1권1호
    • /
    • pp.27-41
    • /
    • 2014
  • An active flow control technique based on "smart-tabs" is proposed to delay flow separation on a circular cylinder. The actuators are retractable and orientable multilayer piezoelectric tabs which protrude perpendicularly from the model surface. They are mounted along the spanwise direction with constant spacing. The effectiveness of the control was tested in pre-critical and in post-critical regime by evaluating the effects of several control parameters of the tabs like frequency, amplitude, height, angular position and plate incidence with respect to the local flow. Measurements of the mean static pressure distribution around the cylinder were used to estimate the pressure drag coefficient. The maximum drag reduction achieved in the pre-critical regime was of the order of 30%, whereas in the post-critical regime was about 10%, 3% of which due to active forcing. Furthermore, pressure fluctuation measurements were performed and spectral analysis indicated an almost complete suppression of the vortex shedding in active forcing conditions.

고분자 물질 첨가에 의한 2상 유동의 마찰 항력 감소와 대류 열전달 특성 (The Drag Reduction and Convective Heat Transfer Characteristics of Two-Phase Flow with Polymer Additives)

  • 이동상;김재근;차경옥
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.71-76
    • /
    • 2000
  • This experimental study was conducted to figure out the drag reduction and convective heat transfer in vertical downward two-phase flow with polymer additives. The drag reduction effect were analyzed by using the difference of the pressure drop between the flow with polymer additives and without it. Experimental results show that the pressure drop with polymer additives is less than the pressure drop without polymer in vertical downward two-phase flow. And the convective heat transfer has decreased with increasing the polymer concentration in vertical downward two-phase flow.

  • PDF

난류유동장에서 Shear - thinning 유체에 의한 마찰저항 감소에 관한 연구 (A Study on the Drag Reduction by Shear-thinning Fluid in Turbulent Flow Fields)

  • 차경옥;김재근;오율권
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.126-135
    • /
    • 1997
  • Drag reduction in polymer solutions is the phenomenon where by extremely dilute solutions of high molecular weight polymers exhibit frictional resistance to flow much lower than the pure solvent. This effect, largely unexplained as yet, has attracted the attention of polymer scientists and fluid flow specialists. Although applications are beginning to appear, the principle interest to data has been in attempting to relate the effect to the fluid mechanics of turbulent flow. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, and pool and boiling flow. But the research on drag reduction in two phase flow is not intensively investigated. Therefore, experimental investigations have been carried out to analyze the drag reduction produced by polymer addition in the single phase and two phase flow system. The objectives of the proposed investigation are primarily in identifying and developing high performance polymer additives for fluid transportations with the benefits of turbulent drag. Also we want to is to evaluate the drag reduction in horizontal flow by measuring pressure drop and mean velocity. Experimental results show higher drag reduction using co - polymer(A611P) then using polyacrylamide (PAAM) and faster degradation using PAAM than using A611P under the same superficial velocity.

  • PDF

헬리컬형 분자 드래그 펌프의 유동특성에 관한 연구 (A Study on the Pumping Performance of a Helical-type Molecular Drag Pump)

  • 김도행;권명근;황영규
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2723-2728
    • /
    • 2008
  • The present study is numerically and experimentally performed to reveal the pumping characteristics of a helical-type molecular drag pump (HTDP) in the molecular transition flow region. In the experimental study, the pressures are measured simultaneously at the 5 positions along the helical channel of rotor under various conditions of outlet pressure and throughputs, and nitrogen is used as test gas. The outlet pressure is in the range of 26-533 Pa. As results, the local pressure changes are checked corresponding to the various outlet pressure and throughput of HTDP. In the numerical study, Navier-Stokes equations with slip boundary conditions are employed (Re< 1000, Kn< 0.1). The local pressure distribution and the pumping speed are calculated. The numerical results are compared with the experimental results. The numerically computed value agrees with the experimental data within an error of approximately 5%.

  • PDF

2단 원판형 드래그펌프의 배기 성능에 관한 실험적 연구 (An Experimental Study on the Pumping Performance of the Two-Stage Disk-Type Drag Pump)

  • 황영규;허중식;권명근;양성민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.347-352
    • /
    • 2001
  • In this paper, the pumping performance of the two-stage disk-type drag pump which works in the outlet pressure range from 3 to 0.001 Torr is studied experimentally. The rotational speed of the pump is 24,000rpm, and nitrogen is used as a test gas. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The maximum compression ratios for zero throughput are 1000(two-stage BSC type), 740(helical-type), 90(BSC type) and 85(OSC type), respectively. The ultimate pressure of the two-stage disk-type drag pump is $8.1\times10^6$ Torr.

  • PDF

기-액(氣-液) 2상유동(二相流動)시 항력(抗力)에 관(關)한 연구(硏究) (The Study on the Drag Reduction for Gas/Liquid Two Phase Flow)

  • 차경옥;오율권;김재근
    • 한국분무공학회지
    • /
    • 제1권3호
    • /
    • pp.20-28
    • /
    • 1996
  • It is well known that drag reduction in single phase liquid flow is affected by polymer material, molecular weight, polymer concentration, pipe diameter, and flow velocity. Drag reduction in two phase flow can be applied to the transport of crude oil, phase change system such as chemical reactor, pool and boiling flow, and to present cavitation which occurs in pump impellers. But the research of drag reduction in two phase flow is not sufficient. The purpose of the present work is to evaluate the drag reduction by measuring pressure drop, void fraction whether polymer is added in the horizontal two phase system or not. Experiment has been conducted in a test section with 24 m of the inner diameter and 1,500 mm of the length. The used polymer materials are two kinds of polyacrylamide[PAAM] and co-polymer[A611P]. The polymer concentration was varied with 50, 100 and 200 ppm under the same experimental conditions. Experimental results were shown that the drag is higher reduced by co-polymer rather than polyanylamide.

  • PDF

Effects of different wind deflectors on wind loads for extra-large cooling towers

  • Ke, S.T.;Zhu, P.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제28권5호
    • /
    • pp.299-313
    • /
    • 2019
  • In order to examine the effects of different wind deflectors on the wind load distribution characteristics of extra-large cooling towers, a comparative study of the distribution characteristics of wind pressures on the surface of three large cooling towers with typical wind deflectors and one tower without wind deflector was conducted using wind tunnel tests. These characteristics include aerodynamic parameters such as mean wind pressures, fluctuating wind pressures, peak factors, correlation coefficients, extreme wind pressures, drag coefficients and vorticity distribution. Then distribution regularities of different wind deflectors on global and local wind pressure of extra-large cooling towers was extracted, and finally the fitting formula of extreme wind pressure of the cooling towers with different wind deflectors was provided. The results showed that the large eddy simulation (LES) method used in this article could be used to accurately simulate wind loads of such extra-large cooling towers. The three typical wind deflectors could effectively reduce the average wind pressure of the negative pressure extreme regions in the central part of the tower, and were also effective in reducing the root of the variance of the fluctuating wind pressure in the upper-middle part of the windward side of the tower, with the curved air deflector showing particularly. All the different wind deflectors effectively reduced the wind pressure extremes of the middle and lower regions of the windward side of the tower and of the negative pressure extremes region, with the best effect occurring in the curved wind deflector. After the wind deflectors were installed the drag coefficient values of each layer of the middle and lower parts of the tower were significantly higher than that without wind deflector, but the effect on the drag coefficients of layers above the throat was weak. The peak factors for the windward side, the side and leeward side of the extra-large cooling towers with different wind deflectors were set as 3.29, 3.41 and 3.50, respectively.