• 제목/요약/키워드: Pressure Cooling System

검색결과 608건 처리시간 0.027초

저압 에어포그 시스템을 설치한 온실의 냉방효율 (Cooling Efficiency of Low Pressure Compressed Air Fogging System in Naturally Ventilated Greenhouses)

  • 남상운;김영식;성인모;고기혁
    • 한국농공학회논문집
    • /
    • 제54권5호
    • /
    • pp.49-55
    • /
    • 2012
  • In order to derive the efficient utilization of low pressure compressed air fogging system, cooling efficiencies with control types were analyzed through cooling experiments in tomato greenhouses. The control types were set up with temperature control, humidity control, temperature and humidity control, and time control. It showed that the cooling effects were 0.7 to $3.3^{\circ}C$ on average and maximum of 4.3 to $7.0^{\circ}C$, the humidification effects were 3.5 to 13.5 % on average and maximum of 14.3 to 24.4 %. Both the cooling and humidification effect were the highest in the time control method. The cooling efficiency of the air fogging system was not high with 8.3 to 27.3 % on average. However, the cooling efficiency of 24.6 to 27.3 % which appears from the time control is similar to the cooling efficiency of high pressure fogging system experimented in Japan. The air fogging system is operated by low pressure, but its efficiency is similar to high pressure. We think because it uses compressed air. From this point of view, we suggest that the air fogging system can get the cooling efficiency of similar levels to that of high pressure fogging system and it will have an advantage from clogging problem of nozzle etc.

청과물상자의 통기공 및 상자적재방법이 정압강하에 미치는 영향 (The Effect of Air Vent Holes and Stacking Methods of Fruits and Vegetables Boxes on Static Pressure Drop in Pressure Cooling System)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.360-367
    • /
    • 1995
  • The effect of air vent holes, stacking methods of boxes and clearance between boxes on static pressure drop, were measured to design of pressure cooling system. Static pressure drops in air vent hole of carton box were measured for different hole opening ratio from 1% to 5%. Static pressure drop was expressed as a function of superficial velocity as second-degree polynomial. At given static pressure in plenum chamber, static pressure drop in boxes was shown as second-degree polynomial of the number of carton box in series stacking method, as first-degree polynomial in height and parallel stacking method. In pressure cooling of 24 boxes of Tsugaru apple, air flow rates through clearance between the boxes were shown 1.27 and 1.65 times than those of through the inside of boxes at the plenum pressure of 10mmAq and 20mmAq, respectively.

  • PDF

청과물의 품온예측모델 개발 (Development of the Numerical Model for Temperature Prediction of Fruits)

  • 김의웅;김병삼;남궁배;정진웅;김동철;금동혁
    • Journal of Biosystems Engineering
    • /
    • 제20권4호
    • /
    • pp.343-350
    • /
    • 1995
  • In order to design efficient and effective pressure cooling system for fruits and vegetables, a numerical model for temperature prediction of fruits was developed. This model was extended to study the various factors affecting product cooling time, such as product depth, approach air temperature, entering air velocity and initial product temperature. Also, selection of these factors were examined with respect to the efficiency of the pressure cooling system, the overall precooling cost and the final quality of the product. When designing a pressure cooling system for a particular product, the range of the factors must be selected carefully according to the thermal and physiological properties.

  • PDF

해수냉각시스템 성능에 미치는 냉매배관길이의 영향 (Effect of Refrigerant Pipe Length on Sea Water Cooling System Performance)

  • 윤정인;조영제
    • 수산해양기술연구
    • /
    • 제34권3호
    • /
    • pp.346-351
    • /
    • 1998
  • The purpose of this study is analyzing the performance of sea water cooling system under various refrigerant pipe length. In sea water cooling system, the increase of refrigerant pipe length cause increases of pressure drops. These pressure drops cause fresh gas in liquid pipe and increase specific volume in gas pipe outlet, so sea water cooling system capacity is decreased by decrease of refrigerant mass flow rate. Sea water cooling system capacity in refrigerant pipe length 70m is decreased more than 30% when compared with pipe length 10m and the decrease of the coefficient of performance is nearly 20%.

  • PDF

스팀 에젝터에 의한 강제 증발 방식의 냉각 특성에 관한 연구 (Study on Cooling Charcteristics of Forced Evaporation by using Steam Ejector)

  • 손호재;이윤환;김영근;정효민
    • 동력기계공학회지
    • /
    • 제10권2호
    • /
    • pp.41-46
    • /
    • 2006
  • This study shows a water cooling system by using a steam ejector and jet condenser to drop the temperature of the water by about $5^{\circ}C\;from\;25^{\circ}C$ or higher. In this research, to replace the present water cooling system, we focused on a water cooling system by latent heat of evaporation, thus this system needs a vacuum pressure to evaporate the water in enclosed tank. The water cooling effects are depended on the vacuum pressure in the enclosed tank, and the cooling water is generated by latent head of evaporation. As the experimental results, the absolute vacuum pressure obtained was about $5{\sim}8$ mmHg using a steam driven ejector with jet condenser.

  • PDF

수 이젝터를 이용한 밀폐형 진공탱크내의 온도저감 특성 (Characteristics of Cooling Down in the Enclosed Vacuum Tank by Water Driving Ejector)

  • 김세현;신유식;배강열;이윤환;정효민;정한식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.700-705
    • /
    • 2003
  • The general cooling tower is a device for making a cooling water in refrigerant condensers or industrial process heat exchangers. The present cooling tower have defects with noises, complicated structure and environmental problems. In this paper, we constituted a new water cooling system by using a evaporating latent heat in an enclosed tank, and this system is consisted of an enclosed vacuum tank and water driving ejector system. Several experimental cases were carried out for improvement methods of high vacuum pressure and water cooling characteristics. The ejector performance was tested in case of water temperature variations that flows in the ejector. Based on the vacuum pressure by water driving ejector, the water cooling characteristics were investigated for the vaporized air condensing effects.

  • PDF

초전도 케이블 냉각유로에서의 압력강하 특성 (Pressure Drop Characteristics on HTS Power Cables with LN2 Flow)

  • 고득용;염한길;이관수
    • 설비공학논문집
    • /
    • 제18권1호
    • /
    • pp.81-86
    • /
    • 2006
  • High temperature superconducting (HTS) power cable requires forced sub-cooled LN2 flow cooling. Liquid nitrogen is circulated by a pump and cooled back by cooling system. Typical operating temperature range is expected to be between 65 K and 77 K. The HTS power cable needs sufficient cooling to overcome its low temperature heat load. For successful cooling, the hydraulic characteristics of the HTS power cable must be well investigated to design the cables. Especially, the pressure drop in the cable is an important design parameter, because the pressure drop decides the length of the cable, size of the coolant circulation pump and circulation pressure, etc. This paper describes measurement and investigation of the pressure drop of the cooling system. In order to reduce the total pressure drop of the cooling system, the flow rate of liquid nitrogen must be controlled by rotational speed of the circulation pump.

Cryogenic cooling system for a 154 kV/ 2 kA superconducting fault current limiter

  • In, Sehwan;Hong, Yong-Ju;Yeom, Hankil;Ko, Junseok;Kim, Hyobong;Park, Seong-Je;Han, Young-Hee
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권2호
    • /
    • pp.34-39
    • /
    • 2018
  • A cryogenic cooling system is designed for a 154 kV/ 2 kA three-phase hybrid type superconducting fault current limiter (SFCL). The superconducting modules of the SFCL have the operating condition of 71 K at 500 kPa. The total heat load of the SFCL including the cooling system is estimated at 9.6 kW. The cooling system of the closed loop is configured to meet the operating condition, depending on cooling methods of forced flow cooling and re-liquefaction cooling. The cooling system is composed of three cryostats with superconducting modules, cryocoolers, liquid nitrogen circulation pumps, a subcooler and a pressure builder. The basic cooling concept is to circulate liquid nitrogen between three SFCL cryostats and the cryocooler, while maintaining the operating pressure. The design criterion for the cooling system is based on the operation results of the cooling system for a 154 kV/2 kA single-phase hybrid SFCL. The specifications of system components including the piping system are determined according to the design criterion.

$CO_2$용 2단압축 1단팽창 냉동 사이클의 성능 분석 (Performance Analysis of a Carbon Dioxide(R744) Two-Stage Compression and One-Stage Expansion Refrigeration Cycle)

  • 노건상;손창효
    • 동력기계공학회지
    • /
    • 제13권6호
    • /
    • pp.70-75
    • /
    • 2009
  • In this paper, cycle performance analysis of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature in the carbon dioxide two-stage refrigeration cycle. The main results were summarized as follows : The cooling capacity of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, compressor efficiency and gas cooling pressure, but decreases with the increasing mass flowrate ratio and evaporating temperature. The compression work of two-stage compression and one-stage expansion refrigeration system increases with the increasing superheating degree, outlet temperature of gas cooler, gas cooling pressure and evaporating temperature, but decreases with the increasing compressor efficiency and mass flowrate ratio. The COP of two-stage compression and one-stage expansion refrigeration system increases with the increasing compressor efficiency, but decreases with the increasing superheating degree, gas cooling pressure, mass flowrate ratio and evaporating temperature. Therefore, superheating degree, compressor efficiency, gas cooling pressure, mass flowrate ratio, outlet temperature of gas cooler and evaporating temperature of R744($CO_2$) two-stage compression and one-stage expansion refrigeration system have an effect on the cooling capacity, compressor work and COP of this system.

  • PDF

스윕을 가진 냉각탑용 축류홴의 성능 특성에 관한 수치해석적 연구 (Numerical Investigation of Performance Characteristics for Cooling Tower Axial Fans with Sweep)

  • 오건제
    • 동력기계공학회지
    • /
    • 제13권4호
    • /
    • pp.31-37
    • /
    • 2009
  • The purpose of this numerical study was to investigate performance characteristics for cooling tower axial fans with sweep. Performance data for the fans with various sweep angles were obtained in terms of the setting angle at a constant flow rate. Viscous flow calculations were carried out to obtain Performance data of the total pressure rise and hydraulic efficiency. A solution of the Ffowcs Williams-Hawkings equations was used to calculate the sound pressure level at three times fan diameter away from the fan. The calculated performance data well represented performance characteristics of the cooling tower axial fan. The total pressure rise and hydraulic efficiency at the same setting angle decreased with sweep angle. Sound pressure level slightly decreased for the fan with a sweep angle of 10 degree. No significant effect of the sweep geometry was found on the sound pressure level.

  • PDF