• 제목/요약/키워드: Pressure Control Valve

검색결과 765건 처리시간 0.022초

해양플랜트용 고압.고차압 제어밸브의 구조 안전성 평가 (Safety Estimation of High Pressure Drop Control Valve for Offshore Structures)

  • 김재웅
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.553-558
    • /
    • 2011
  • This study have goal with conceptual design for offshore structures of high pressure drop control valve for localization valve for development accomplished with flow analysis based on provision of ANSI B16.34, ANSI B16.10, ANSI B16.25. In order to localize the Offshore structures high pressure drop control valve. This study is numerical analysis for zambil offshore project of high pressure drop control valve. The solver which ANSYS workbench used for offshore structures analysis. The working fluids assumed the glycerin(C3H8O3). The structural analysis used ANSYS which is a commercial code. Stress analysis result of internal pressure in valve showed lower than yield strength. This is expect to need more detail design and verification for stem and disk structure. In this study a multi-disk of high pressure drop control valve is designed and manufactured. Then, the flow rate and high pressure dorp of fluids flowing in the high pressure drop control valve is CAE. So, this system can be easily substituted for the existing zambil offshore project system. Finally, safety estimation for trim design of high pressure drop control valve for offshore structures.

수소 압축기용 릴리프 밸브 모델링 및 성능해석에 관한 연구 (A Study on the Relief Valve Modeling and Performance Analysis of Hydrogen Compressor)

  • 박상법;김규보;전충환;윤소남;권병수
    • 한국수소및신에너지학회논문집
    • /
    • 제20권3호
    • /
    • pp.179-187
    • /
    • 2009
  • This paper presents a static and dynamic characteristics of the relief valve which is a kind of direct operated pressure control valve for hydrogen compressor. The valve is consisted of a main poppet, a spring, an adjuster and a valve body. The purpose of this study is development of the simulation model for relief valve by using commercial AMESlM$^{(R)}$ tool. Poppet with sharp edge seat type and ball poppet with sharp edge seat type compare for P-Q characteristic. The dynamic simulation results are presented the operating pressure characteristics of relief valve. High pressure power unit of which maximum pressure control range is 100MPa was manufactured, and the pressure control valve was experimented using the above-mentioned power unit. The new model of pressure control valve from this results was suggested. It was confirmed that the suggested valve has a good control performance from experimental setup.

전자식 비례 압력제어밸브 내 오일 오염 입자 제거 제어 알고리즘 검증 (Verification of Control Algorithm for Removing Oil Contaminant Factor from Proportional Pressure Control Valve)

  • 천수환;박진감;장경제;심성보;장민호;이진웅
    • 드라이브 ㆍ 컨트롤
    • /
    • 제18권4호
    • /
    • pp.1-8
    • /
    • 2021
  • An electro proportional pressure control valve is mainly used to control the clutch of an agricultural tractor's automatic transmission. During transmission, the operating, hydraulic oil is mix with many kinds of contaminants. The contaminants can be trapped between the valve body and spool of the proportional pressure control valve leading to abnormal operating conditions and finally critical damage to the transmission hydraulic system. The present study aimed to verify the valve control algorithm as a basic study of developing control logic that removes contaminants between the spool and the body of the proportional pressure control valve. To develop the algorithm, MATLAB/SIMULINK was used. PWM method was used to control the applied solenoid coil current. The effectiveness of the algorithm was verified by comparing the actual pressure of the normal valve with the actual pressure of the abnormal valve. Based on the present study findings, when the algorithm was applied, the response of the valve pressure according to the current became stable and oil contaminated particles were removed. In the future study, the control algorithm will be optimized for the stability of the proportional pressure reducing valve, and it will be verified in consideration with the driving of the clutch.

비례감압밸브의 압력제어특성 (Pressure Control Characteristics of Proportional Pressure Reducing Valve)

  • 윤소남;함영복;조정대
    • 동력기계공학회지
    • /
    • 제7권1호
    • /
    • pp.68-73
    • /
    • 2003
  • The purpose of this study is to develop a new proportional pressure reducing valve and to verify the validity of a new mechanism with pressure control pin. The dynamic characteristics of the object pressure reducing valve was studied by numerical analysis of the mathematical model. Also, static and dynamic characteristics of the new pressure control valve were tested with a testing system based on the test standard.

  • PDF

비례제어방식 솔레노이드 밸브 압력제어특성에 관한 동적해석 (Dynamics Analysis of Pressure Control Characteristics in a Variable Pressure Solenoid Valve)

  • 김형만;태혁준;이현우;이창훈
    • 한국자동차공학회논문집
    • /
    • 제11권6호
    • /
    • pp.80-85
    • /
    • 2003
  • In the present paper, dynamics analyses of pressure control characteristics have been performed in a variable pressure solenoid valve. A number of solenoid valves have been used in the electronic control system, especially automatic transmission of an automobile. Variable pressure solenoid valve is intended to produce spatial movement by the electrical signal. Dynamics analyses of pressure control characteristics have been practiced by the Finite Difference Method, which show the pressure distribution in the solenoid valve. The results of numerical analyses show the dependence of pressure distribution on the displacement of the spool in the solenoid valve, and then, are compared with the experimental results.

차량 능동 현가 장치용 유압 액추에이터의 감쇠력 특성에 관한 연구 (A Study on the Characteristics of Damping Force in a Hydraulic Actuator for Vehicle Active Suspension System)

  • 윤영환;최명진
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.150-158
    • /
    • 2002
  • Through experimental works, the damping force vibration problem was investigated, which results from valve and surge pressure in the oil return line of the hydraulic circuit of an active suspension system in a passenger cu. Experiments were carried out under passive system, where an orifice valve was closed and non-active system, where an orifice valve was opened, using a pressure control valve controlled by solenoid. The effects of parameters of the valve overlap and accumulator on smoothing surge pressure was elucidated. It was proved that the apparent variation of damping force due to the overlap amount of pressure control valve is the most important factor to control the damping force variation. The procedure of the experimental works shows the development process of a proportional pressure control valve in the hydraulics system of an active suspension system of passenger car.

해양플랜트용 고압·고차압 제어밸브의 성능 평가 (Performance Evaluation of High Pressure and High Pressure Drop Control Valve for Offshore Plants)

  • 김규철;이치우
    • 한국생산제조학회지
    • /
    • 제22권5호
    • /
    • pp.767-773
    • /
    • 2013
  • A high-pressure, high-pressure drop control valve, which transforms the power transfer of a system by reducing the inlet pressure of 345bartothe outlet pressure of 112bar, is a fundamental component in an offshore plant process. With the increasingly growing market share of the maritime industry, this valve has been expected to be a high-value-added product. This study not only analyzes the relation between pressure drop and fluid velocity in a trim by using fluid analysis, but also examines the possibility of cavitation in a valve in addition to the plot for the extension of lifespan. Based on the analysis results, the design and production method of the valve are established, and accordingly, performance evaluation is carried out. It is demonstrated that the pressure drop from 345bar to 112bar is more feasible in the presence of the trim, which can induce a continuous and diminutive pressure drop in order to prevent cavitation in a high-pressure drop control valve. Furthermore, despite the fluid velocity near a seatring being found to be over 30m/s, the lifespan of the valve is determined to be adequate considering the operation condition of a prototype valve of 80%.

고속 온-오프 전자 밸브를 사용한 유압 실린더의 압력 제어 (Pressure Control of Hydraulic Cylinder using high Speed On-Off Solenoid Valve)

  • 김상수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.69-78
    • /
    • 1999
  • In this study a new pattern of pressure control of hydraulic cylinder using high speed On-Off solenoid valve in the electro-hydraulic system has been suggested. The control valve is 3-way high speed On-Off solenoid valve which is operated by PWM(Pulse Width Modulation)control signal. The high speed On-Off solenoid valve has a tendency to induce severe pressure fluctuation in the hydraulic actuator so it has not been used for the purpose of closed loop control with direct pres-sure feedback. In this study closed loop control with direct pressure feedback is enabled by using a digital filter which has linear minimum mean square filter algorithm. Through some experiments it is confirmed that stable pressure control can be realized by the proposed control technique.

  • PDF

압력제어솔레노이드밸브를 이용한 직접구동 방식의 유압회로에 의한 자동변속기의 변속품질 향상에 관한 연구

  • 김정관;한명철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.505-508
    • /
    • 1995
  • This paper suggests new hydraulic circuit to control the pressure of clutches and brakes which has several advantages than conventional hydraulic circuit in automatic transmissions. In conventional hydraulic circuit, the pressures of all friction elements are controlled by only one pressure control valve and accumlators. So, controllable range is limited and it is unable to control the friction elements independently. Therefore, we can not do the fine control of timing between apply clutch and release clutch which is needed in clutch-to clutch shifting automatic transmissions. To overcome these faults, we designed the direct-acting hydraulic circuit where one pressure control valve and pressure control solenoid valve are allocated to each friction element and control that independently. Through this structural improvement of hydraulic circuit, we can achieve elaborate aontrol to clutch pressure. Specially, We can control the timing between apply clutch and release clutch delicately which is needed in clutch-to-clutch shifting.

  • PDF

차량 자세제어 시스템의 비례압력제어밸브 해석모델 개발 및 최적화 설계 (Optimization Design and Development of the Proportional Pressure Control Valve Analysis Model of Active Body Control)

  • 김동명;장주섭;손태관
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.127-134
    • /
    • 2014
  • Active body control system is an important system for determining the driving stability and ride comfort of the vehicle. Active body control system is composed of a cylinder unit power supply unit, and control valve unit. Control valve is a proportional pressure control valve, the dynamic characteristics of the valve affects the performance of the active body control system. We have developed an analytical model, we analyzed the design parameters of the proportional pressure control valve. Further, by knowing the design parameters effect on the system and to optimize the design parameters, and improved performance of the dynamic properties.