• Title/Summary/Keyword: Pressure Altitude Setting

Search Result 2, Processing Time 0.015 seconds

Procedure of Barometer Setting in Flight with On-board Navigation Data alone (자체 항법 정보만을 이용한 비행 중 기압 고도계 설정 방법)

  • Jung, Suk-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.300-308
    • /
    • 2012
  • In GPS/INS/barometer navigation system for UAV, two procedures were proposed in order to set three reference parameters for the pressure altitude of QNH or QFE settings, using the navigation data from on-board system alone. These procedures yield required the reference parameters through mathematical process with the altitude and the atmosphere properties measured for a short duration of flight, of which a special pattern is requested according to the selected procedure. Dependency only upon the on-board navigation data can eliminate a requirement for the atmospheric measurement system in the ground support system and can expand a flight boundary to a remote area where the ground support is not available. Especially the procedure with the regression method uses altitude and pressure but temperature to produce the three reference parameters. No need of temperature measurement for the pressure altitude system can simplify the on-board air data system.

Setting Development Priorities of Undeveloped Neighborhood Parks in the Downtown of Cheongju City using a Park Development Pressure Index (공원조성 압력지수를 이용한 공원개발 우선순위 선정 - 청주시 도심 미개발근린공원을 대상으로 -)

  • Ban, Yong-Un;Lee, Tae-Ho
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.4
    • /
    • pp.1-11
    • /
    • 2009
  • This study was intended to set development priorities for five undeveloped neighborhood parks scattered throughout the downtown area of Cheongju City using a PDPI(Park Development Pressure Index). In order to calculate the PDPI, this study employed an additive integration method. The PDPI was graded from 1 to 5, based on the evaluation scores in accordance with nine indicators selected through literature reviews and interviews with public officials. The indicators have been classified into three categories: physical environment, utilization possibility, and facility distribution. The indicators are as follows: 1) 'altitude and inclination' and 'NDVI' as physical environment indicators; 2) 'ratio of residential area', 'forecasted utility population', 'undeveloped period', 'redevelopment near parks', 'ratio of area divided by main streets', reflecting utilization possibility; and 3) 'Distance between Neighborhood Parks' and 'Distribution of alternative facilities' as facility distribution. The following results were found: 1) three neighborhood parks including 'Sagic 2', 'Sachen', and 'Dangsan' were ranked in the first grade of PDPI; and, 2) one neighborhood park 'Samsungdang' was ranked in the fifth grade of PDPI. The above results mean that among undeveloped neighborhood parks, three have been exposed to extremely strong park development pressure, and that while two neighborhood parks have had strong exposure to park development pressure due to potential users according to their close location to Sagic Ro, an east-west main axis of Cheongju City, one neighborhood park has had weak exposure to development pressure because of the close location to 'Chuungbuk National University' and a lack of residential areas, showing a low possibility for development.