• Title/Summary/Keyword: Pressure vessel

Search Result 1,356, Processing Time 0.026 seconds

Seismic Analysis of the Reflective Metal Insulation for Thermal Shielding of Main Equipments of Nuclear Power Plants (원전 설비 열차폐를 위한 반사형 금속단열재의 내진 해석)

  • Kim, Seung-Hyeon;Rhee, Huinam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.6
    • /
    • pp.166-172
    • /
    • 2016
  • This paper deals with the seismic qualification of the reflective metal insulation for thermal shielding that is installed on the outer surfaces of the main equipment of the primary coolant system of a nuclear power plant. A small-scale model of the reactor pressure vessel, which has equivalent dynamic characteristics, was designed to be tested in domestic seismic testing facilities in the future. In this study, seismic analysis of the small-scale model installed with metal insulation was performed using equivalent static analysis and response spectrum analysis. The required Response Spectrum for main equipment of the primary coolant system of APR-1400 plant were considered to establish the enveloping response spectrum, which was applied to the seismic analysis model. The results from two seismic analysis methods were compared to show the structural adequacy of the metal insulator design against a safe shutdown earthquake. This study will form the basis for the seismic testing to support the seismic qualification of the reflective metal insulator.

The Shock and Fracture Analysis of Ship Structure Subject to Underwater Shock Loading (수중충격하중을 받는 선체구조의 충격 및 파손 해석)

  • Kie-Tae Chung;Kyung-Su Kim;Young-Bok Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.1
    • /
    • pp.118-131
    • /
    • 1995
  • The shock fracture analysis for the structures of navy vessels subject to underwater explosions or of high speed vessels frequently subject to impact loads has been carried out in two steps such as the global or macro analysis and the fine or micro analysis. In the macro analysis, Doubly Asymptotic Approximation(DAA) has been applied. The three main failure modes of structure members subject to strong shock loading are late time fracture mode such as plastic large deformation mainly due to dynamic plastic buckling, and the early time fracture mode such as tensile tearing failure or transverse shear failure. In this paper, the tensile tearing failure mode is numerically analyzed for the micro analysis by calculating the dynamic stress intensity factor $K_I(t)$, which shows the relation between stress wave and crack propagation on the longitudinal stiffener of the model. Especially, in calculating this factor, the numerical caustic method developed from shadow optical method of caustic well known as experimental method is used. The fully submerged vessel is adopted for the macro analysis at first, of which the longitudinal stiffener, subject to early shock pressure time history calculated in macro analysis, is adopted for the micro analysis.

  • PDF

Permeability and Strength of Cements Exposed to Supercritical CO2 for Varying Periods (초임계 CO2 - 시멘트 반응 전후의 투수율 및 강도 변화)

  • Lee, Hikweon;Kim, Kideok;Kim, Taehee;Kim, Gyo-Won
    • The Journal of Engineering Geology
    • /
    • v.26 no.1
    • /
    • pp.117-128
    • /
    • 2016
  • Chemical reaction tests were performed to assess the properties of hardened specimens of cement pastes (KS-1 Portland and Class G) exposed to supercritical CO2 for 1, 10, and 100 days. After exposure, the samples' measured permeability and strength were compared with values measured for pristine samples. The pristine cements had permeabilities of 0.009~0.025 mD, which increased by one order of magnitude after 100 days of exposure (to 0.11~0.29 mD). The enhancement of permeability is attributed to the stress release experienced by the samples after removal from the pressure vessel after exposure. Despite its enhancement, the measured permeability mostly remained lower than the API (American Petroleum Institute) recommended maximum value of 0.2 mD. The degradation of the cement samples due to exposure to supercritical CO2 led to a layer of altered material advancing inwards from the sample edges. The Vickers hardness in the altered zone was much higher than that in the unaltered zone, possibly owing to the increase in density and the decrease in porosity due to the carbonation that occurred in the altered zone. Hardness close to the edge within the altered zone was found to have decreased significantly, which is attributed to the conversion of C-S-H into less-strong amorphous silica.

Time Series Observations of Atmospheric Radon Concentration in Seoul, Korea for an Analysis of Long-Range Transportation of Air Pollutants in the North-East Asia (동북아 오염물질 장거리이동 분석을 위한 서울시 대기 중 라돈농도의 시계열적 특성에 관한 연구)

  • Kim, Yoon-Shin;Lee, Cheol-Min;Kim, Ki-Youn;Jeon, Hyung-Jin;Kim, Jong-Cheol;Iida, Takao
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.4
    • /
    • pp.283-292
    • /
    • 2007
  • Atmospheric concentrations of radon had been continuously observed in Seoul, Korea since December 1999, as a tracer for long-range transport of air pollutants from China continent to Korea. In order to study radon as a tracer of long-range transport, it is important to know information about the atmospheric distribution and variation of radon concentration and its time variation. Atmospheric radon concentration are measured with electrostatic radon monitor(ERM) at Hanyang University located in Eastern area of Seoul. Air sample is taken into a vessel of ERM, and alpha particles emitted by radon daughters $Po^{218}$ are detected with ZnS(Ag) scintillation counter. Hourly mean concentrations and hourly alpha counts are recorded automatically. The major results obtained from time series observation of atmospheric radon were as follows : (1) The mean of airborne radon concentration in Seoul was found to be $7.62{\pm}4.11\;Bq/m^3$ during December $1999{\sim}January$ 2002. (2) The hourly variation of radon concentrations showed the highest in 8:00AM ($8.66{\pm}4.22\;Bq/m^3$) and the lowest in 3:00AM ($6.62{\pm}3.70\;Bq/m^3$) and 5:00AM ($6.62{\pm}3.39\;Bq/m^3$). (3) the seasonal variation of radon concentrations showed higher during winter-to-fall and lower during summer-to-spring. (4) Correlation between airborne radon concentration and the meteorological factors were -0.21 for temperature, 0.09 for humidity, -0.20 for wind speed, and 0.04 for pressure. (5) The mean difference of airborne radon concentration between Asian dust ($5.36{\pm}1.28\;Bq/m^3$) and non-Asian dust ($4.95{\pm}1.49\;Bq/m^3$) phenomenon was significant (p=0.08). We could identify time series distribution of radon concentration related meteorological factors. In addition, radon can be considered a good natural tracer of vertical dispersion and long-range transport.

Development of a Short-term Failure Assessment of High Density Polyethylene Pipe Welds - Application of the Limit Load Analysis - (고밀도 폴리에틸렌 융착부에 대한 단기간 파손 평가법 개발 - 한계하중 적용 -)

  • Ryu, Ho-Wan;Han, Jae-Jun;Kim, Yun-Jae;Kim, Jong-Sung;Kim, Jeong-Hyeon;Jang, Chang-Heui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.4
    • /
    • pp.405-413
    • /
    • 2015
  • In the US, the number of cases of subterranean water contamination from tritium leaking through a damaged buried nuclear power plant pipe continues to increase, and the degradation of the buried metal piping is emerging as a major issue. A pipe blocked from corrosion and/or degradation can lead to loss of cooling capacity in safety-related piping resulting in critical issues related to the safety and integrity of nuclear power plant operation. The ASME Boiler and Pressure Vessel Codes Committee (BPVC) has recently approved Code Case N-755 that describes the requirements for the use of polyethylene (PE) pipe for the construction of Section III, Division 1 Class 3 buried piping systems for service water applications in nuclear power plants. This paper contains tensile and slow crack growth (SCG) test results for high-density polyethylene (HDPE) pipe welds under the environmental conditions of a nuclear power plant. Based on these tests, the fracture surface of the PENT specimen was analyzed, and the fracture mechanisms of each fracture area were determined. Finally, by using 3D finite element analysis, limit loads of HDPE related to premature failure were verified.

Finding Hazard Factors by New Risks on Maritime Safety in Korea

  • Park, Deuk-Jin;Park, Seong-Bug;Yang, Hyeong-Sun;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.3
    • /
    • pp.278-285
    • /
    • 2016
  • The key features of maritime accidents are the change of their attributes by new risks from time to time. To prevent maritime accidents in Korea, the impacts by new risks on domestic safety environments should be identified or predicted. The purpose of this paper is to find the hazard factors by new risks on maritime safety in Korea. The meaning of new risks is the elements of accident hazard which is compiled from new or rare or unprecedented events in the worldwide maritime transportations. The problems of new risks are the lacks of optimum countermeasures to mitigate accident risks. Using the questionnaires with 152 event scenarios classified by 20 accident causes, the hazard identification and risk analysis of new risks was performed based on the Formal Safety Assessment (FSA) by IMO. A total of 22 Influence Diagrams, which is to depict the transit flows between accident causes to consequences, is used in the construction of 152 event scenarios. A total of 20 accidents causes is the same contents as the causation factors represented in Statistical Year Book for Maritime Accidents of Korean Maritime Safety Tribunals. After defining the evaluation equations to the response results of questionnaires by 46 experts, the work for risk analysis is carried out. As results from the analysis of 152 scenarios, it is known that the root cause to affect on maritime safety in Korea is the pressure of business competition and it led to the lacks of well experienced crews, the overload of vessel operations and crew's fatigue. In addition, as results from the analysis of 20 accident causes, the three accident causes are to be candidate as main issues in Korea such as the inadequate preparedness of departure, the neglecting of watch keeping in bridge and the inadequate management of ship operations. All of the results are thought to be as basic hazard factors to safety impediments. It is thus found that the optimum Risk Control Options to remove the hazard factors and to mitigate consequences required are the following two factors: business competition and crewing problems.

FMEA of Electrostatic Precipitator for Preventive Maintenance (전기집진기 예지보전 단계에서의 고장모드영향분석)

  • Han, Seung-Hun;Lee, Jeong-Uk;Lee, Sun-Youp;Hwang, Jong-Deok;Kang, Dae-Kon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.706-714
    • /
    • 2020
  • Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.

브란운관의 후면유리 폐기물을 이용한 제올라이트 합성

  • Jang, Yeong-Nam;Bae, In-Guk;Chae, Su-Cheon;Ryu, Gyeong-Won
    • Journal of the Korean Professional Engineers Association
    • /
    • v.34 no.2
    • /
    • pp.167-173
    • /
    • 2001
  • Through alkaline hydrothermal activation processes, Na-A type zeolite was synthesized as a single phase withfunnel-glass waste from a television tube factory. The autoclaving was performed in a closed teflon vessel in therange of 80~95"C. The silica-rich solution as a starting material was hydrothermally synthesized with quartz in INNaOH by heating 350"C under the pressure of 1,500 atm. NaA102 was made from NaOH and Al(OH)3 by heating95"c for 2~3 hours and the molar ratios of it were Na20/A1203=1.4 and H20Ha20=8. The equi-dimensional Atype zeolite (1 ~2 U) was formed by the simple mixing of'the silica-rich solution, glass waste and NaA102 for I~3hours-heating at 80"C. The characterization of the reaction product shows Na-A as a single phase. The synthesizedzeolite has cube-dodecahedral form and Ca2+ ion exchange capacity of the Na-A was in the range of 215~220mequivalent/100 g.20mequivalent/100 g.

Emergency bleeding control in a mentally retarded patient with active oral and maxillofacial bleeding injuries: report of a case (구강악안면 손상 후 과도한 출혈을 보인 정신지체 응급환자에서 신속지혈 예: 증례보고)

  • Mo, Dong-Yup;Yoo, Jae-Ha;Choi, Byung-Ho;Sul, Sung-Han;Kim, Ha-Rang;Lee, Chun-Ui
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.36 no.4
    • /
    • pp.303-308
    • /
    • 2010
  • Excessive oral and maxillofacial bleeding causes upper airway obstruction, bronchotracheal and gastric aspiration and hypovolemic shock. Therefore, the rapid and correct bleeding control is very important for saving lives in the emergency room. Despite the conventional bleeding control methods of wiring (jaw fracture, wound suture and direct pressure), continuous bleeding can occur due to the presence of various bleeding disorders. There are five main causes for excessive bleeding disorders in the clinical phase; (1) vascular wall alteration (infection, scurvy etc.), (2) disorders of platelet function (3) thrombocytopenic purpura (4) inherited disorders of coagulation, and (5) acquired disorders of coagulation (liver disease, anticoagulant drug etc.). In particular, infections can alter the structure and function of the vascular wall to a point at which the patient may have a clinical bleeding problem due to vessel engorgement and erosion. Wound infection is a frequent cause of postoperative active bleeding. To prevent postoperative bleeding, early infection control using a wound suture with proper drainage establishment is very important, particularly in the active bleeding sites in a contaminated emergency room. This is a case report of a rational bleeding control method by rapid wiring, wound suture with drainage of a rubber strip & iodoform gauze and wet gauze packing, in a 26-year-old male cerebral palsy patient with active oral and maxillofacial bleeding injuries caused by a traffic accident.

Sensitivity Analysis of Finite Element Parameters for Estimating Residual Stress of J-Groove Weld in RPV CRDM Penetration Nozzle (원자로 CRDM 관통노즐 J-Groove 용접부 잔류응력 예측을 위한 유한요소 변수 민감도 해석)

  • Bae, Hong-Yeol;Kim, Ju-Hee;Kim, Yun-Jae;Oh, Chang-Young;Kim, Ji-Soo;Lee, Sung-Ho;Lee, Kyoung-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1115-1130
    • /
    • 2012
  • In nuclear power plants, the reactor pressure vessel (RPV) upper head control rod drive mechanism (CRDM) penetration nozzles are fabricated using J-groove weld geometry. Recently, the incidences of cracking in Alloy 600 CRDM nozzles and their associated welds have increased significantly. The cracking mechanism has been attributed to primary water stress corrosion cracking (PWSCC), and it has been shown to be driven by welding residual stresses and operational stresses in the weld region. The weld-induced residual stress is the main factor contributing to crack growth. Therefore, an exact estimation of the residual stress is important for ensuring reliable operation. This study presents the residual stress computation performed for an RPV CRDM penetration nozzle in Korea. Based on two and three dimensional finite element analyses, the effect of welding variables on the residual stress variation is estimated for sensitivity analysis.