• 제목/요약/키워드: Pressed

검색결과 940건 처리시간 0.032초

On demand nanowire device decalcomania

  • Lee, Tae-Il;Choi, Ji-Hyuck;Moon, Kyung-Ju;Jeon, Joo-Hee;Myoung, Jae-Min
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 추계학술발표대회
    • /
    • pp.26.1-26.1
    • /
    • 2009
  • A simple route of external mechanical force is presented for enhancing the electrical properties of polymer nanocomposite consisted of nanowires. By dispersing ZnO nanowires in polymer solution and drop casting on substrates, nanocomposite transistors containing ZnO nanowires are successfully fabricated. Even though the ZnO nanowires density is properly controlled for device fabrication, as-cast device doesn't show any detectable currents, because nanowires are separated far from each other with the insulating polymer matrix intervening between them. Compared to the device pressed at 300 kPa, the device pressed at 600 kPa currents increased by 50times showing the linear behavior against drain voltage and exhibits promising electrical properties, which operates in the depletion mode with higher mobility and on-current. Such an improved device performance would be realized by the contacts improvement and the increase of the number of electrical path induced by external force. This approach provides a viable solution for serious contact resistance problem of nanocomposite materials and promises for future manufacturing of high-performance devices.

  • PDF

이중 기공구조를 갖는 다공질체의 제조 (Fabrication of Double-layered Porous Materials)

  • 윤중열;김해두;박천홍
    • 한국세라믹학회지
    • /
    • 제39권10호
    • /
    • pp.919-927
    • /
    • 2002
  • 표면층과 내부간의 기공구조가 다른 다공질체를 제조하기 위해 입자크기가 다른 두 종류의 분체를 이용하여 다공질 성형체를 제조하였다. 두 층간의 소결 수축율을 동일하게 제어하기 위해 성형밀도 변화에 따른 소결밀도 변화를 예측할 수 있는 Ford's equation을 도입하여 소결 수축율을 동일한 조건을 구하였다. 제조된 다공질체는 미세구조와 통기도를 조사함으로서 기공의 이중 구조화 여부를 평가하였다. SEM 관찰결과 기공크기가 다른 두 층으로 구성되어 있는 것을 확인하였다. 각 층의 통기도는 출발 입자크기와 기공율이 클수록 증가하였으며, 이중 기공구조를 갖는 시편의 통기도는 기공크기가 작은 층의 특성에 의존하였다.

TEOS와 카올린으로부터 제조한 $\beta$-Sialon의 기계적 성질 (Mechanical Properties of Beta-Sialon Ceramics Prepared from TEOS and Kaolin)

  • 임헌진;이홍림
    • 한국세라믹학회지
    • /
    • 제26권5호
    • /
    • pp.637-644
    • /
    • 1989
  • Beta-sialon powder(Z=1) was synthesized by the simultaeous reduction and nitridation of the mixed powders of Hadong kaolin and silica. Silicon hydroxide was prepared from Si-alkoxide by a hydrolysis method and amorphous silica was obtained from the calcination of the prepared silicon hydroxide. Hadong kaolin was mixed with both the silicon hydroxide and amorphous silica, respectively. The average particle size was 4${\mu}{\textrm}{m}$ and the morphology of particle was rod-like and equiaxed in the case of beta-sialon powder prepared form Hadong kaolin and silicon hydroxide(COMPOSITION A), whereas the average particle size was 3${\mu}{\textrm}{m}$ and the morphology of particle was equiaxed in the case of beta-sialon powder prepared from Hadong kaolin and amorphous silica(COMPOSITION B). The synthesized beta-sialon powders were hot-pressed at 175$0^{\circ}C$ for 2 hours under 30 MPa in a nitrogen atmosphere after YAG composition(8wt%) was added to these powders as a sintering agent. The hot-pressed specimens were annealed a 140$0^{\circ}C$ for 4 hours in a nitrogen atmosphere. The mechanical properties of sintered bodies were investigated in terms of M.O.R., fracture toughness and hardness. The measured values are as follows. COMPOSITION A : M.O.R. 508MPa, KIC 3.5MN/m3/2, hardness 13.6GPa. COMPOSITION B : M.O.R. 653MPa, KIC 5.4MN/m3/2, hardness 13.5GPa.

  • PDF

Cu 입자분산 Al2O3 나노복합재료의 미세조직과 기계적 특성에 미치는 소결온도의 영향 (Effect of Sintering Temperature on Microstructure and Mechanical Properties of Cu Particles Dispersed Al2O3 Nanocomposites)

  • 정영근;오승탁;좌용호
    • 한국분말재료학회지
    • /
    • 제13권5호
    • /
    • pp.366-370
    • /
    • 2006
  • The microstructure and mechanical properties of hot-pressed $Al_2O_3/Cu$ composites with a different sintering temperature have been studied. The size of matrix grain and Cu dispersion in composites increased with increase in sintering temperature. Fracture toughness of the composite sintered at high temperature exhibited an enhanced value. The toughness increase was explained by the thermal residual stress, crack bridging and crack branching by the formation of microcrack. The nanocomposite, hot-pressed at $1450^{\circ}C$, showed the maximum fracture strength of 707 MPa. The strengthening was mainly attributed to the refinement of matrix grains and the increased toughness.