• Title/Summary/Keyword: Press-over

Search Result 1,335, Processing Time 0.021 seconds

Crack segmentation in high-resolution images using cascaded deep convolutional neural networks and Bayesian data fusion

  • Tang, Wen;Wu, Rih-Teng;Jahanshahi, Mohammad R.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.221-235
    • /
    • 2022
  • Manual inspection of steel box girders on long span bridges is time-consuming and labor-intensive. The quality of inspection relies on the subjective judgements of the inspectors. This study proposes an automated approach to detect and segment cracks in high-resolution images. An end-to-end cascaded framework is proposed to first detect the existence of cracks using a deep convolutional neural network (CNN) and then segment the crack using a modified U-Net encoder-decoder architecture. A Naïve Bayes data fusion scheme is proposed to reduce the false positives and false negatives effectively. To generate the binary crack mask, first, the original images are divided into 448 × 448 overlapping image patches where these image patches are classified as cracks versus non-cracks using a deep CNN. Next, a modified U-Net is trained from scratch using only the crack patches for segmentation. A customized loss function that consists of binary cross entropy loss and the Dice loss is introduced to enhance the segmentation performance. Additionally, a Naïve Bayes fusion strategy is employed to integrate the crack score maps from different overlapping crack patches and to decide whether a pixel is crack or not. Comprehensive experiments have demonstrated that the proposed approach achieves an 81.71% mean intersection over union (mIoU) score across 5 different training/test splits, which is 7.29% higher than the baseline reference implemented with the original U-Net.

Dynamic analysis by impact load in viscoelastic sandwich plates with FRP layer utilizing numerical method

  • Bayati, Mohammad Reza;Mazaheri, Hamid;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.43 no.2
    • /
    • pp.229-240
    • /
    • 2022
  • The main objective of this work is presenting a mathematical model for the concrete slab with fiber reinforced polymer (FRP) layer under the impact load. Impacts are assumed to occur normally over the top slab and the interaction between the impactor and the structure is simulated using a new equivalent three-degree-of-freedom (TDOF) spring-mass-damper (SMD) model. The structure is assumed viscoelastic based on Kelvin-Voigt model. Based on the sinusoidal shear deformation theory (SSDT), energy method and Hamilton's principle, the motion equations are derived. Applying DQM, the dynamic deflection and contact force of the structure is calculated numerically so that the effects of mass, velocity and height of impactor, boundary conditions, FRP layer, structural damping and geometrical parameters of structure are shown on the dynamic deflection and contact force of system. Results show that considering structural damping leads to lower dynamic deflection and contact force. In addition, increasing the impact velocity of impactor yields to increases in the maximum contact force and deflection while the contact duration is decreased. The result shows that the contact force and the central deflection of the structure decreases and the contact time decreases with assuming FRP layer.

Theoretical formulations of current and unique Rayleigh waves with impedance boundary condition embedding normal stress

  • Nguyen, Xuan Quynh;Lee, Dongkyu
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.279-286
    • /
    • 2022
  • In this article, a novel propagation formulation of Rayleigh waves in a compressible isotropic half-space with impedance boundary condition is proposed by embedding the normal stress. In a two-dimensional case, it is assumed that a design boundary is free of normal traction and a shear traction depends on linearly a normal component of displacements multiplied by frequencies. Therefore, impedance boundary conditions affect the normal stress, where the impedance parameters correspond to dimensions of stresses over velocity. On the other hand, vanished impedance values are traction-free boundary conditions. The main purpose of this article is to present theoretically the existence and uniqueness of a Rayleigh wave formulation relying on secular equation's mathematical analyses. Its velocity varies along with the impedance parameters. Moreover, numerical experiments with different values for the velocity of Rayleigh waves are carried out. The present Rayleigh waves study is a fundamental step in analyzing the cause and effect of physical states such as building or structure damages resulting from natural dynamics. The results of the study generate a basic design formulation theory to test the effects of Rayleigh waves affecting structures when an earthquake occurs. The presence and uniqueness of the proposed formulation is verified by mutual comparisons of several numerical examples.

Simulation of monopile-wheel hybrid foundations under eccentric lateral load in sand-over-clay

  • Zou, Xinjun;Wang, Yikang;Zhou, Mi;Zhang, Xihong
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.585-598
    • /
    • 2022
  • The monopile-friction wheel hybrid foundation is an innovative solution for offshore structures which are mainly subjected to large lateral eccentric load induced by winds, waves, and currents during their service life. This paper presents an extensive numerical analysis to investigate the lateral load and moment bearing performances of hybrid foundation, considering various potential influencing factors in sand-overlaying-clay soil deposits, with the complex lateral loads being simplified into a resultant lateral load acting at a certain height above the mudline. Finite element models are generated and validated against experimental data where very good agreements are obtained. The failure mechanisms of hybrid foundations under lateral loading are illustrated to demonstrate the effect of the friction wheel in the hybrid system. Parametric study shows that the load bearing performances of the hybrid foundation is significantly dependent of wheel diameter, pile embedment depth, internal friction angle of sand, loading eccentricity (distance from the load application point to the ground level), and the thickness of upper sandy layer. Simplified empirical formulae is proposed based on the numerical results to predict the corresponding lateral load and moment bearing capacities of the hybrid foundation for design application.

Capturing research trends in structural health monitoring using bibliometric analysis

  • Yeom, Jaesun;Jeong, Seunghoo;Woo, Han-Gyun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.29 no.2
    • /
    • pp.361-374
    • /
    • 2022
  • As civil infrastructure has continued to age worldwide, its structural integrity has been threatened owing to material deteriorations and continual loadings from the external environment. Structural Health Monitoring (SHM) has emerged as a cost-efficient method for ensuring structural safety and durability. As SHM research has gradually addressed an increasing number of structure-related problems, it has become difficult to understand the changing research topic trends. Although previous review papers have analyzed research trends on specific SHM topics, these studies have faced challenges in providing (1) consistent insights regarding macroscopic SHM research trends, (2) empirical evidence for research topic changes in overall SHM fields, and (3) methodological validations for the insights. To overcome these challenges, this study proposes a framework tailored to capturing the trends of research topics in SHM through a bibliometric and network analysis. The framework is applied to track SHM research topics over 15 years by identifying both quantitative and relational changes in the author keywords provided from representative SHM journals. The results of this study confirm that overall SHM research has become diversified and multi-disciplinary. Especially, the rapidly growing research topics are tightly related to applying machine learning and computer vision techniques to solve SHM-related issues. In addition, the research topic network indicates that damage detection and vibration control have been both steadily and actively studied in SHM research.

Evaluation of high plasticity clay stabilization methods for resisting the environmental changes

  • Taleb, Talal;Unsever, Yesim S.
    • Geomechanics and Engineering
    • /
    • v.30 no.5
    • /
    • pp.461-469
    • /
    • 2022
  • One of the most important factors that should be considered for using any ground improvement technique is the stability of stabilized soil and the durability of the provided solution for getting the required engineering properties. Generally, most of the earth structures that are constructed on clayey soils are exposing movements due to the long periods of drying or wetting cycles. Over time, environmental changes may result in swells or settlements for these structures. In order to mitigate this problem, this research has been performed on mixtures of high plasticity clay with traditional additives such as lime, cement and non-traditional additives such as polypropylene fiber. The purpose of the research is to assess the most appropriate ground improvement technique by using commercially available additives for resisting the developed desiccation cracks during the drying process and resisting the volume changes that may result during wet/dry cycles as an attempt to simulate the changes of environmental conditions. The results show that the fiber-reinforced samples have the lowest volumetric deformation in comparision with cement and lime stabilized samples, and the optimum fiber content is identified as 0.38%. In addition, the desiccation cracks were not visible on the samples' surface for both unreinforced and chemically stabilized samples. Regarding cracks resistance resulting from the desiccation process, it is observed, that the resistance is connected with the fiber content and increases with the increase of the fiber inclusion, and the optimum content is between 1% and 1.5%.

Effect of aggregate mineralogical properties on high strength concrete modulus of elasticity

  • Kaya, Mustafa;Komur, M. Aydin;Gursel, Ercin
    • Advances in concrete construction
    • /
    • v.13 no.6
    • /
    • pp.411-422
    • /
    • 2022
  • Aggregates mineralogical, and petrographic properties directly affect the mechanical properties of the produced high strength. This study is focused on the effects of magmatic, sedimentary, and metamorphic aggregates on the performance of high strength concrete. In this study, the effect of the mineralogical properties of aggregates on the compressive strength and modulus of elasticity of high-strength concrete was estimated by Artifical Neural Network (ANN). To estimate the compressive strength and elasticity modules, 96 test specimens were produced. After 28 days under suitable conditions, tests were carried out to determine the compressive strength and modulus of elasticity of the test specimens. This study also focused on the application of artificial neural networks (ANN) to predict the 28-day compressive strength and the modulus of elasticity of high-strength concrete. An ANN model is developed, trained, and tested by using the available test data obtained from the experimental studies. The ANN model is found to predict the modulus of elasticity, and 28 days compressive strength of high strength concrete well, within the ranges of the input parameters. These comparisons show that ANNs have a strong potential to predict the compressive strength and modulus of elasticity of high-strength concrete over the range of input parameters considered.

An equivalent linear SDOF system for prediction of nonlinear displacement demands of non-ductile reinforced concrete buildings with shear walls

  • Saman Yaghmaei-Sabegh;Shabnam Neekmanesh;Nelson Lam;Anita Amirsardari;Nasser Taghizadieh
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.655-664
    • /
    • 2023
  • Reinforced concrete (RC) shear wall structures are one of the most widely used structural systems to resist seismic loading all around the world. Although there have been several efforts to provide conceptually simple procedures to reasonably assess the seismic demands of structures over recent decades, it seems that lesser effort has been put on a number of structural forms such as RC shear wall structures. Therefore, this study aims to represent a simple linear response spectrum-based method which can acceptably predict the nonlinear displacements of a non-ductile RC shear wall structure subjected to an individual ground motion record. An effective period and an equivalent damping ratio are introduced as the dynamic characteristics of an equivalent linear SDOF system relevant to the main structure. By applying the fundamental mode participation factor of the original MDOF structure to the linear spectral response of the equivalent SDOF system, an acceptable estimation of the nonlinear displacement response is obtained. Subsequently, the accuracy of the proposed method is evaluated by comparison with another approximate method which is based on linear response spectrum. Results show that the proposed method has better estimations for maximum nonlinear responses and is more utilizable and applicable than the other one.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

Full-scale bridge expansion joint monitoring using a real-time wireless network

  • Pierredens Fils;Shinae Jang;Daisy Ren;Jiachen Wang;Song Han;Ramesh Malla
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.359-371
    • /
    • 2022
  • Bridges are critical to the civil engineering infrastructure network as they facilitate movement of people, the transportation of goods and services. Given the aging of bridge infrastructure, federal officials mandate visual inspections biennially to identify necessary repair actions which are time, cost, and labor-intensive. Additionally, the expansion joints of bridges are rarely monitored due to cost. However, expansion joints are critical as they absorb movement from thermal effects, loadings strains, impact, abutment settlement, and vehicle motion movement. Thus, the need to monitor bridge expansion joints efficiently, at a low cost, and wirelessly is desired. This paper addresses bridge joint monitoring needs to develop a cost-effective, real-time wireless system that can be validated in a full-scale bridge structure. To this end, a wireless expansion joint monitoring was developed using commercial-off-the-shelf (COTS) sensors. An in-service bridge was selected as a testbed to validate the performance of the developed system compared with traditional displacement sensor, LVDT, temperature and humidity sensors. The short-term monitoring campaign with the wireless sensor system with the internet protocol version 6 over the time slotted channel hopping mode of IEEE 802.15.4e (6TiSCH) network showed reliable results, providing high potential of the developed system for effective joint monitoring at a low cost.