• Title/Summary/Keyword: Press-over

Search Result 1,322, Processing Time 0.029 seconds

Workability and compressive behavior of PVA-ECC with CNTs

  • Lee, Dongmin;Lee, Seong-Cheol;Yoo, Sung-Won
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • TBM concrete segment requires a higher level of material properties compared to general concrete structures due to difficulties in maintenance and uncertainty in ground conditions. In this regard, recently, as one of the methods to achieve enhancement effect on concrete strength, many researchers have been focusing on adding CNTs to concrete mixture. However, even CNTs do not compensate the weakness that concrete exhibits brittle behavior after cracking. Separately, over the past few decades, a number of studies have been conducted on fiber reinforced concrete which exhibits ductile behavior due to fibers bridging cracks. However, only limited studies have been conducted to employ the advantages of the both materials together. In this study, an experimental program has been conducted to investigate the effect of CNTs on the workability and the compressive behavior of PVA-ECC which exhibits ductile tensile behavior with well-distributed cracks even without a conventional rebar. In addition to the compression test, SEM analysis has been also conducted for detailed investigation in the microstructure. The variable was the CNTs mix ratio, which were set to 0.00, 0.25, and 0.50 wt.% to the binding materials. It was observed though the test results that as the CNTs mix ratio increased, the workability considerably decreased with the reduced slump and slump flow. From the compression test results, it was also investigated that the compressive behavior was improved since the compressive strength, the strain corresponding to the compressive strength, and the modulus of elasticity increased with an increase of CNTs mix ratio. The contents of this paper will be useful for relevant research areas such as fiber reinforced concrete with CNTs which might be applied for high performance TMB concrete segments.

Normal data based rotating machine anomaly detection using CNN with self-labeling

  • Bae, Jaewoong;Jung, Wonho;Park, Yong-Hwa
    • Smart Structures and Systems
    • /
    • v.29 no.6
    • /
    • pp.757-766
    • /
    • 2022
  • To train deep learning algorithms, a sufficient number of data are required. However, in most engineering systems, the acquisition of fault data is difficult or sometimes not feasible, while normal data are secured. The dearth of data is one of the major challenges to developing deep learning models, and fault diagnosis in particular cannot be made in the absence of fault data. With this context, this paper proposes an anomaly detection methodology for rotating machines using only normal data with self-labeling. Since only normal data are used for anomaly detection, a self-labeling method is used to generate a new labeled dataset. The overall procedure includes the following three steps: (1) transformation of normal data to self-labeled data based on a pretext task, (2) training the convolutional neural networks (CNN), and (3) anomaly detection using defined anomaly score based on the softmax output of the trained CNN. The softmax value of the abnormal sample shows different behavior from the normal softmax values. To verify the proposed method, four case studies were conducted, on the Case Western Reserve University (CWRU) bearing dataset, IEEE PHM 2012 data challenge dataset, PHMAP 2021 data challenge dataset, and laboratory bearing testbed; and the results were compared to those of existing machine learning and deep learning methods. The results showed that the proposed algorithm could detect faults in the bearing testbed and compressor with over 99.7% accuracy. In particular, it was possible to detect not only bearing faults but also structural faults such as unbalance and belt looseness with very high accuracy. Compared with the existing GAN, the autoencoder-based anomaly detection algorithm, the proposed method showed high anomaly detection performance.

Research on the factors affecting the development of shrinkage cracks of rammed earth buildings

  • Zhao, Xiang;Cai, Hengli;Zhou, Tiegang;Liu, Ling;Ding, Yijie
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.365-375
    • /
    • 2021
  • Rammed earth (RE) buildings have existed all over the world for thousands of years, and have gained increasing attention because of its sustainable advantages, however, the shrinkage cracks reduce its bearing capacity and seriously affect its durability and applicability. In this study, the shrinkage cracks test was carried out to investigate the effects of initial water content, proportion of sand and gravel, compaction degree, thickness and the additives (polypropylene fiber, cement and sodium silicate) of shrinkage cracks in RE buildings, ten groups of RE samples were prepared and dried outdoors to crack. Four quantitative parameters of geometrical structure of crack patterns were used to evaluate the development of cracks. The results show that the specimens cracking behavior and the geometrical structure of crack patterns are significantly influenced by these considered factors. The formation of crack can be accelerated with the increase of initial water content and thickness of specimen, while restricted with the increase of the compaction degree and the proportion of sand and gravel. Moreover, the addition of 1% polypropylene fiber, 10% cement and 0.5 volume ratio sodium silicate can significantly restrain the form and development of cracks. In RE construction, these factors should be considered comprehensively to prevent the harm caused by shrinkage cracks. Further works should be carried out to obtain the optimum dosage of the additives, which can benefit the construction of RE buildings in future.

Axial compressive behavior of concrete-encased CFST stub columns with open composite stirrups

  • Ke, Xiaojun;Ding, Wen;Liao, Dingguo
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.399-409
    • /
    • 2021
  • The existing method to improve the coordination performance of the inner and outer parts of concrete-encased concrete-filled steel tube (CFST) composite columns by increasing the volume-stirrup ratio causes difficulties in construction due to over-dense stirrups. Thus, this paper proposes an open polygonal composite stirrup with high strength and high ductility CRB600H reinforced rebar, and seventeen specimens were constructed, and their axial compressive performance was tested. The main parameters considered were the volume-stirrup ratio, the steel tube size, the stirrup type and the stirrup strength. The test results indicated: For the specimens restrained by open octagonal composite stirrups, compared with the specimen of 0.5% volume-stirrup ratio, the compressive bearing capacity increased by 14.6%, 15.7% and 21.5% for volume-stirrup ratio of 0.73%, 1.07% and 1.61%, respectively. For the specimens restrained by open composite rectangle stirrups, compared with the specimen of 0.79% volume-stirrup ratio, the compressive bearing capacity increased by 7.5%, 6.1%, and -1.4% for volume-stirrup ratio of 1.12%, 1.58% and 2.24%, respectively. The restraint ability and the bearing capacity of the octagonal composite stirrup are better than other stirrup types. The specimens equipped with open polygonal composite stirrup not only had a higher ductility than those with the traditional closed-loop stirrup, but they also had a higher axial bearing capacity than those with an HPB300 strength grades stirrup. Therefore, the open composite stirrup can be used in practical engineering. A new calculation method was proposed based on the stress-strain models for confined concrete under different restrain conditions, and the predicted value was close to the experimental value.

Effect of GGBS and fly ash on mechanical strength of self-compacting concrete containing glass fibers

  • Kumar, Ashish;Singh, Abhinav;Bhutani, Kapil
    • Advances in concrete construction
    • /
    • v.12 no.5
    • /
    • pp.429-437
    • /
    • 2021
  • In the era of building engineering the intensification of Self Compacting Concrete (SCC) is world-shattering magnetism. It has lot of rewards over ordinary concrete i.e., enrichment in production, cutback in manpower, brilliant retort to load and vibration along with improved durability. In the present study, the mechanical strength of CM-2 (SCC containing 10% of rice husk ash (RHA) as cement replacement and 600 grams of glass fibers per cubic meter) was investigated at various dosages of cement replacement by fly ash (FA) and GGBS. A total of 17 SCC mixtures including two control SCC mixtures (CM-1 and CM-2) were developed for investigating fresh and hardened properties in which, ten ternary cementitious blends of SCC by blending OPC+RHA+FA, OPC+RHA+GGBS and five quaternary cementitious blends (OPC+RHA+FA+GGBS) at different replacement dosages of FA and GGBS were developed with reference to CM-2. For constant water-cement ratio (0.42) and dosage of SP (2.5%), the addition of glass fibers (600 grams/m3) in CM-1 i.e., CM-2 shows lower workability but higher mechanical strength. While fly ash based ternary blends (OPC+RHA+FA) show better workability but lower mechanical strength as FA content increases in comparison to GGBS based ternary blends (OPC+RHA+GGBS) on increasing GGBS content. The pattern for mixtures appeared to exhibit higher workablity as that of the concentration of FA+GGBS rises in quaternary blends (OPC+RHA+FA+GGBS). A decrease in compressive strength at 7-days was noticed with an increase in the percentage of FA and GGBS as cement replacement in ternary and quaternary blended mixtures with respect to CM-2. The highest 28-days compressive strength (41.92 MPa) was observed for mix QM-3 and the lowest (33.18 MPa) for mix QM-5.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • v.35 no.1
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

Power spectral density method performance in detecting damages by chloride attack on coastal RC bridge

  • Mehrdad, Hadizadeh-Bazaz;Ignacio J., Navarro;Victor, Yepes
    • Structural Engineering and Mechanics
    • /
    • v.85 no.2
    • /
    • pp.197-206
    • /
    • 2023
  • The deterioration caused by chloride penetration and carbonation plays a significant role in a concrete structure in a marine environment. The chloride corrosion in some marine concrete structures is invisible but can be dangerous in a sudden collapse. Therefore, as a novelty, this research investigates the ability of a non-destructive damage detection method named the Power Spectral Density (PSD) to diagnose damages caused only by chloride ions in concrete structures. Furthermore, the accuracy of this method in estimating the amount of annual damage caused by chloride in various parts and positions exposed to seawater was investigated. For this purpose, the RC Arosa bridge in Spain, which connects the island to the mainland via seawater, was numerically modeled and analyzed. As the first step, each element's bridge position was calculated, along with the chloride corrosion percentage in the reinforcements. The next step predicted the existence, location, and timing of damage to the entire concrete part of the bridge based on the amount of rebar corrosion each year. The PSD method was used to monitor the annual loss of reinforcement cross-section area, changes in dynamic characteristics such as stiffness and mass, and each year of the bridge structure's life using sensitivity equations and the linear least squares algorithm. This study showed that using different approaches to the PSD method based on rebar chloride corrosion and assuming 10% errors in software analysis can help predict the location and almost exact amount of damage zones over time.

Sustainable controlled low-strength material: Plastic properties and strength optimization

  • Mohd Azrizal, Fauzi;Mohd Fadzil, Arshad;Noorsuhada Md, Nor;Ezliana, Ghazali
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.393-407
    • /
    • 2022
  • Due to the enormous cement content, pozzolanic materials, and the use of different aggregates, sustainable controlled low-strength material (CLSM) has a higher material cost than conventional concrete and sustainable construction issues. However, by selecting appropriate materials and formulations, as well as cement and aggregate content, whitethorn costs can be reduced while having a positive environmental impact. This research explores the desire to optimize plastic properties and 28-day unconfined compressive strength (UCS) of CLSM containing powder content from unprocessed-fly ash (u-FA) and recycled fine aggregate (RFA). The mixtures' input parameters consist of water-to-cementitious material ratio (W/CM), fly ash-to-cementitious materials (FA/CM), and paste volume percentage (PV%), while flowability, bleeding, segregation index, and 28-day UCS were the desired responses. The central composite design (CCD) notion was used to produce twenty CLSM mixes and was experimentally validated using MATLAB by an Artificial Neural Network (ANN). Variance analysis (ANOVA) was used for the determination of statistical models. Results revealed that the plastic properties of CLSM improve with the FA/CM rise when the strength declines for 28 days-with an increase in FA/CM, the diameter of the flowability and bleeding decreased. Meanwhile, the u-FA's rise strengthens the CLSM's segregation resistance and raises its strength over 28 days. Using calcareous powder as a substitute for cement has a detrimental effect on bleeding, and 28-day UCS increases segregation resistance. The response surface method (RSM) can establish high correlations between responses and the constituent materials of sustainable CLSM, and the optimal values of variables can be measured to achieve the desired response properties.

Mechanical behavior of coiled tubing over wellhead and analysis of its effect on downhole buckling

  • Zhao, Le;Gao, Mingzhong;Li, Cunbao;Xian, Linyun
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.199-210
    • /
    • 2022
  • This study build finite element analysis (FEA) models describing the bending events of coiled tubing (CT) at the wellhead and trips into the hole, accurately provide the state of stress and strain while the CT is in service. The bending moment and axial force history curves are used as loads and boundary conditions in the diametrical growth models to ensure consistency with the actual working conditions in field operations. The simulation diametrical growth results in this study are more accurate and reasonable. Analysis the factors influencing fatigue and diametrical growth shows that the internal pressure has a first-order influence on fatigue, followed by the radius of the guide arch, reel and the CT diameter. As the number of trip cycles increase, fatigue damage, residual stress and strain cumulatively increase, until CT failure occurs. Significant residual stresses remain in the CT cross-section, and the CT exhibits a residual curvature, the initial residual bending configuration of CT under wellbore constraints, after running into the hole, is sinusoidal. The residual stresses and residual bending configuration significantly decrease the buckling load, making the buckling and buckling release of CT in the downhole an elastic-plastic process, exacerbating the helical lockup. The conclusions drawn in this study will improve CT models and contribute to the operational and economic success of CT services.

Effectiveness study of a cement mortar coating based on dune sand on the carbonation of concrete

  • Korichi, Youssef;Merah, Ahmed;Khenfer, Med Mouldi;Krobba, Benharzallah
    • Advances in concrete construction
    • /
    • v.13 no.4
    • /
    • pp.315-325
    • /
    • 2022
  • Reinforced concrete structures are exposed throughout their lifetime to the phenomenon of carbonation, which considerably influences their durability by causing corrosion of the reinforcements. The fight against this phenomenon is usually ensured by anti-carbonation coatings which have the possibility of limiting the permeability to carbon dioxide or with coatings which absorb the CO2 present in the air. A coating with good crack-bridging (sealing) capacity will prevent water from entering through existing cracks in concrete. Despite the beneficial effect of these coatings, their durability decreases considerably over time with temperature and humidity. In order to use coatings made from local materials, not presenting any danger, available in abundance in our country, very economical and easy to operate is the main objective of this work. This paper aim is to contribute to the formulation of a corrected dune sand-based mortar as an anti-carbonation coating for concrete. The results obtained show that the cement mortar based on dune sand formulated has a very satisfactory compressive strength, a very low water porosity compared to ordinary cement mortar and that this mortar allows an improvement in the protection of the concrete against the carbonation of 60% compared to ordinary cement mortar based on alluvial sand. Moreover, the formulated cement mortars based on dune sand have good adhesion to the concrete support, their adhesion strengths are greater than 1.5MPa recommended by the standards.