• Title/Summary/Keyword: Press-fit

Search Result 207, Processing Time 0.023 seconds

Incorporating magneto-Rheological damper into riser tensioner system to restrict riser stroke in moderate-size semisubmersibles

  • Zainuddin, Zaid;Kim, Moo-Hyun;Kang, Heon-Yong;Bhat, Shankar
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.101-118
    • /
    • 2018
  • In case of conventional shallow-draft semisubmersibles, unacceptably large riser stroke was the restricting factor for dry-tree-riser-semisubmersible development. Many attempts to address this issue have focused on using larger draft and size with extra heave-damping plates, which results in a huge cost increase. The objective of this paper is to investigate an alternative solution by improving riser systems through the implementation of a magneto-rheological damper (MR Damper) so that it can be used with moderate-size/draft semisubmersibles. In this regard, MR-damper riser systems and connections are numerically modeled so that they can couple with hull-mooring time-domain simulations. The simulation results show that the moderate-size semisubmersible with MR damper system can be used with conventional dry-tree pneumatic tensioners by effectively reducing stroke-distance even in the most severe (1000-yr) storm environments. Furthermore, the damping level of the MR damper can be controlled to best fit target cases by changing input electric currents. The reduction in stroke allows smaller topside deck spacing, which in turn leads to smaller deck and hull. As the penalty of reducing riser stroke by MR damper, the force on the MR-damper can significantly be increased, which requires applying optimal electric currents.

Interaction assessment and optimal design of composite action of plastered typha strawbale

  • Olatokunbo, Ofuyatan;Adeola, Adedeji;Maxwell, Omeje;Simon, Olawale
    • Advances in materials Research
    • /
    • v.6 no.2
    • /
    • pp.221-231
    • /
    • 2017
  • The concept design of the typha strawbale masonry came up as a result of the urgent demand for a means of constructing sustainable buildings, both in rural and urban settlement, not only suitable for dwellers but for keeping farm products by structures that will respond to the environmental eco-system, coupled with the fact that such structures are also affordable, durable and easy to maintain during their service period. The effects of contact between plaster and the stacked strawbale of a masonry needs to be established and design optimization for durability and stability of the masonry be obtained. The assessment will involve the application of plaster materials (cement and natural earth) to the wall specimen panels. Past works have shown that plastered strawbale walls have adequate resistance against the appropriate vertical loads, and further showed that the earth plaster can bear higher stress than the cement plastered straw bale. There is the implication that the collapse or response of the earth-strawbale wall is significantly higher compared to that of cement-strawbale from other straw-based masonries. Therefore the allowable stresses of plastered typha strawbale shall be predicted for their optimum values using SAP2000. The stress stability of each masonry is obtained by analytical model using the best fit variables for the wall height and thickness.

Comparison of machine learning techniques to predict compressive strength of concrete

  • Dutta, Susom;Samui, Pijush;Kim, Dookie
    • Computers and Concrete
    • /
    • v.21 no.4
    • /
    • pp.463-470
    • /
    • 2018
  • In the present study, soft computing i.e., machine learning techniques and regression models algorithms have earned much importance for the prediction of the various parameters in different fields of science and engineering. This paper depicts that how regression models can be implemented for the prediction of compressive strength of concrete. Three models are taken into consideration for this; they are Gaussian Process for Regression (GPR), Multi Adaptive Regression Spline (MARS) and Minimax Probability Machine Regression (MPMR). Contents of cement, blast furnace slag, fly ash, water, superplasticizer, coarse aggregate, fine aggregate and age in days have been taken as inputs and compressive strength as output for GPR, MARS and MPMR models. A comparatively large set of data including 1030 normalized previously published results which were obtained from experiments were utilized. Here, a comparison is made between the results obtained from all the above mentioned models and the model which provides the best fit is established. The experimental results manifest that proposed models are robust for determination of compressive strength of concrete.

Mathematical Problem Solving for Everyone: A Design Experiment

  • Quek, Khiok Seng;Dindyal, Jaguthsing;Toh, Tin Lam;Leong, Yew Hoong;Tay, Eng Guan
    • Research in Mathematical Education
    • /
    • v.15 no.1
    • /
    • pp.31-44
    • /
    • 2011
  • An impetus for reviving research in mathematical problem solving is the recent advance in methodological thinking, namely, the design experiment ([Gorard, S. (2004). Combining methods in educational research. Maidenhead, England: Open University Press.]; [Schoenfeld, A. H. (2009). Bridging the cultures of educational research and design. Educational Designer. 1(2). http://www.educationaldesigner.orgied/volume1/issue21]). This methodological approach supports a "re-design" of contextual elements to fulfil the overarching objective of making mathematical problem solving available to all students of mathematics. In problem solving, components critical to successful design in one setting that may be adapted to suit another setting include curriculum design, assessment strategy, teacher capacity, and instructional resources. In this paper, we describe the implementation, over three years, of a problem solving module into the main mathematics curriculum of an Integrated Programme school in Singapore which had sufficient autonomy to tailor-fit curriculum to their students.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

Design and Analysis of 3 Phase ANPC Circuit Based on SiC Hybrid Module (SiC 소자 기반의 대용량 3상 ANPC 설계 및 분석 기법 연구)

  • Joe, Injoon;Ahn, Sungguk;Kim, Hoyeol;Hwang, Kwangkyu;Koh, Kwangsoo;Lee, Seungwoon;Kang, Hohyun;Kim, Heejung;Kim, Younggeun
    • Proceedings of the KIPE Conference
    • /
    • 2019.11a
    • /
    • pp.190-191
    • /
    • 2019
  • 최근 신재생 에너지와 ESS와 같은 분산 전원의 사용이 점차 늘어나면서, 이들을 제어하는 전력 변환 장치에 대한 기대치는 점점 상승하고 있다. 특히 DC 1500V에 대한 요구 및 고 효율, 고 전력밀도에 대한 요구는 최근 Wide band gap 소자의 발전과 함께 산업계 전반에 주요한 이슈이다. 본 논문은 이러한 요구를 만족하기 위한 Hybrid ANPC의 설계를 논하도록 한다. 구성의 정합성을 확인하기 위해, 손실 분석이 진행될 것이며, 최근 SiC 모듈의 발전 방향인 Press-fit type의 설계에 맞춰 Power PCB 설계를 위한 모의 실험을 진행한다.

  • PDF

Testing of the permeability of concrete box beam with ion transport method in service

  • Wang, Jia Chun
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.461-471
    • /
    • 2015
  • The permeability is the most direct indicator to reflect the durability of concrete, and the testing methods based on external electric field can be used to evaluate concrete permeability rapidly. This study aims to use an experiment method to accurately predict the permeability of concrete box beam during service. The ion migration experiments and concrete surface resistivity are measured to evaluate permeability of five concrete box beams, and the relations between these results in service concrete and electric flux after 6 hours by ASTM C1202 in the laboratory are analyzed. The chloride diffusion coefficient of concrete, concrete surface resistivity and concrete 6 hours charge have good correlation relationship, which denote that the chloride diffusion coefficient and the surface resistivity of concrete are effective for evaluating the durability of concrete structures. The chloride diffusion coefficient of concrete is directly evaluated permeability of concrete box beam in service and may be used to predict the service life, which is fit to engineering applications and the concrete box beam is non-destructive. The concrete surface resistivity is easier available than the chloride diffusion coefficient, but it is directly not used to calculate the service life. Therefore the mathematical relation of the concrete surface resistivity and the concrete chloride diffusion coefficient need to be found, which the service life of reinforced concrete is obtained by the concrete surface resistivity.

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Influencing factors on electrical conductivity of compacted kaolin clay

  • Lee, J.K.;Shang, J.Q.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.131-151
    • /
    • 2011
  • The electrical conductivity of a soil-water system is related to its engineering properties. By measuring the soil electrical conductivity, one may obtain quantitative, semi-quantitative, or qualitative information to estimate the in-situ soil behavior for site characterization. This paper presents the results of electrical conductivity measured on compacted kaolin clay samples using a circular two-electrode cell in conjunction with a specially designed compaction apparatus, which has the advantage of reducing errors due to sample handling and increasing measurement accuracy. The experimental results are analyzed to observe the effects of various parameters on soil electrical conductivity, i.e. porosity, unit weight, water content and pore water salinity. The performance of existing analytical models for predicting the electrical conductivity of saturated and unsaturated soils is evaluated by calculating empirical constants in these models. It is found that the Rhoades model gives the best fit for the kaolin clay investigated. Two general relationships between the formation factor and soil porosity are established based on the experimental data reported in the literature and measured from this study for saturated soils, which may provide insight for understanding electrical conduction characteristics of soils over a wide range of porosity.

An artificial neural network residual kriging based surrogate model for curvilinearly stiffened panel optimization

  • Sunny, Mohammed R.;Mulani, Sameer B.;Sanyal, Subrata;Kapania, Rakesh K.
    • Advances in Computational Design
    • /
    • v.1 no.3
    • /
    • pp.235-251
    • /
    • 2016
  • We have performed a design optimization of a stiffened panel with curvilinear stiffeners using an artificial neural network (ANN) residual kriging based surrogate modeling approach. The ANN residual kriging based surrogate modeling involves two steps. In the first step, we approximate the objective function using ANN. In the next step we use kriging to model the residue. We optimize the panel in an iterative way. Each iteration involves two steps-shape optimization and size optimization. For both shape and size optimization, we use ANN residual kriging based surrogate model. At each optimization step, we do an initial sampling and fit an ANN residual kriging model for the objective function. Then we keep updating this surrogate model using an adaptive sampling algorithm until the minimum value of the objective function converges. The comparison of the design obtained using our optimization scheme with that obtained using a traditional genetic algorithm (GA) based optimization scheme shows satisfactory agreement. However, with this surrogate model based approach we reach optimum design with less computation effort as compared to the GA based approach which does not use any surrogate model.