• Title/Summary/Keyword: Press manufacturing

Search Result 688, Processing Time 0.025 seconds

A state-of-the-art analysis of fresh, mechanical, durability and microstructural characterization of wastewater concrete

  • Nabil Ben Kahla;Ali Raza;Muhammad Arshad;Ahmed Babeker Elhag
    • Advances in concrete construction
    • /
    • v.17 no.2
    • /
    • pp.93-110
    • /
    • 2024
  • The process of concrete production consumes an immense volume of water, with approximately one billion metric tons of freshwater being utilized for tasks such as aggregate washing, fresh concrete production, and concrete curing. The accessibility of clean water for the public is hindered by the limited availability of water resources, primarily due to the rapid expansion of industries such as tanneries, stone quarries, and concrete manufacturing. These industries not only consume substantial amounts of freshwater but also generate significant volumes of various types of waste. Therefore, the use of fresh water in concrete production should be minimized. Few studies have reviewed the production of concrete using wastewater to derive practical and applicable findings for the industry. Thus, this study thoroughly explores the physical and chemical effects of wastewater on concrete, examining aspects like durability, hardened properties, and rheological characteristics. It identifies key factors that can compromise concrete properties when exposed to wastewater. The scarcity of research on integrating wastewater into concrete production underscores the urgent necessity for innovative approaches and methodologies in this field. While the inclusion of wash water typically reduces the workability of fresh concrete, it often enhances its compressive strength. Notably, significant improvements have been observed when using tertiary processed wastewater, wash water, polyvinyl alcohol-based wash water (PVAW), and reclaimed water in the concrete mixing process. The application of tertiary treatment to wastewater resulted in a notable enhancement of compressive strength, showing increases of up to 7%. In contrast, wastewater treated through secondary methods experienced a decline in strength ranging from 9% to 18% over a period of six months. However, the use of reclaimed wastewater demonstrated an improvement in strength by 8% to 17%, depending on the concentration level ranging from 25% to 100%. In contrast, the utilization of secondary processed wastewater and industrial water has a minimal impact on the concrete's strength.

The Study on the Buttons (centering around 19th-20th Centuries) (단추에 관한 연구 -19, 20세기를 중심으로-)

  • 이영란
    • Journal of the Korean Society of Costume
    • /
    • v.22
    • /
    • pp.263-276
    • /
    • 1994
  • The achievement of notable social reoforms attained during the period of 19th and 20th centuries needlessly speaking remodelded the social environmental into several different patterns such as :1) high industrialization 2) propensity to consume 3) up graded overall social stands. Accordingly the industrial world of the but-tons too established the mess production syhstem by breaking from convention of hand-craft work of 17th century. The raw materials used in the production line on buttons during the 20th century are almost all-kind of materials one can possibly named including cheap plastic which enabled production lines to produce cheaper but higher productivities of the buttons being produced, The design (incused design) used in the 19-20h centuries are : men landscape, sports features, birds, livestocks, bugs, or geomatric features, tec, 1, The classification o f the buttons by materials Techniques shapes colors marking (Incused design) used in the productionof buttons in the England United States of America Laska Italy france Denmark Japan and India are categolizzed as : natural raw materials and syntetical resines. 1) Of the natural raw materials used are : Matal Enamel Iodine Agate, Coral, Green jade(Jasper) Granite, Wood, Ivory, Horn and bone etc. 2) The sythetical resin used in the button in-dustries are : Artificial jewell glass Acrylic material Styroform Celluloid and Nylon etc. 2. The thecnique quoted in producing buttons are hand craft work inlay work precision casting press mosic dye etching, processing, engraving and embossed carving etc. 3. The major designs used in the buttons in -dustries are : Round shape however elliptical column angular and edge shape often used. 4. The colors used are : The multi-colors were highly used than mono-colored materials such as : Adjoining Color and Contrast Color. The highest consideration to be considered in choosing the colors for the buttons are harmonization and matching factor with the garment or dresses to be wore. 5. The major design(incused design) on the buttons are embodiment and the design were also used in order of abstractive-combination abstractive with has offers much surprising. The button industries during the 19th and 20th centuries were not only the determination factors those can judge the value of self-pride of Nation and which were far beyond the in-dustrial arts in those days but also highly refelected and influenced by cultural sense ideology and self-pride of the Nation of those period. The followings are details of the role of the buttons categolized in the order of functional ornamental and symbolical aspects : 1. The functional role : The functional role of the buttons were simply designed for dress how-ever the buttons beyond from this role of function now a days. 2. The ornamental role : The ornamental role of he button beyond from this role of the button were effectuated by : 1) shape materials colors 2) technique locations size and design (incused design) 3) The ramaterials used for buttons shall not be over looked because it is highly depends on the taste sense and combination of harmony with the garment to be wore. 4) The color of the buttons are made well contrasted with the color of garments just as in the case of other artistical area such as matchs with the color of garment of contrast with brigtness of colors contrasted as complementary color and so and so. 5) The technique being adoped are: precision casting press handcraft inlay work etching mosic etc,. Since the buttons are no longer a simple catching devise used to fasten together the different part of the dress but now it has formed own and occupied the independent role in the garment or dresses location can be de-termined and varying depending on the ideas of designers. The size of the buttons has no specific limits, However the variation has widely dependined on the entire circumperence rhythm contrast harmonization of the garments. 3. The symbolical role : Since the button is no longer a just a simple devise for catching and fastening device used fastening together the different part of the garments but now were built a independent area as major part of the Garment and well reflected all kinds of occupations political background cultural as-pect etc. on the buttons. The design of buttons in the western circles are more simplified but they are polished looks and their techniques of manufacturing are comination of both machanis and handcraft. The colors used in the buttons are pretty well harmonized with garment(dress). Almost all kind of materials can be used in the but-tons however materials used in the buttons are : Bone of livestocks ivory, turtle shell are no longer used because the prevention of cruely of animal. On the contraly the level of buttons indus-try of Korea is far to reach and catch up with the level of western circles. It is highly suggested therefore the but-tons industrial field of Republic of Korea shall place and encouragement in producing beter industrial environment of the buttons based on the traditional and cultural aspect of republic of Korea to produce both manufacturing of qulified and best designed and colored buttons.

  • PDF

Effects of Formaldehyde/Urea Molar Ratio on Bonding Strength of Plywood and Properties of Sliver-PB and Strand-PB (F/U 몰비의 변이가 합판의 접착성과 Sliver-PB, Strand-PB의 물성에 미치는 영향)

  • Park, Heon;You, Young-Sam
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.38-45
    • /
    • 1999
  • This study was to figure out proper Formaldehyde/Urea molar ratio of UF resin with satisfactory bonding strength of plywood and properties of particleboard. The six kinds of UF resins were manufactured with F/U molar ratio 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0. The boards were made of three kinds of raw materials : Veneer, Sliver-Particle and Strand-Particle. Manufacturing condition of plywood : amount of mixing resin was 150g/$m^2$. The fourty secs/mm simple-pressing schedule in the pressure 10kgf/$m^2$ was applied for 480mm${\times}$700mm board at the temperature of $110^{\circ}C$ in a hot press. Manufacturing condition of particleboard : Target density was 0.65g/$cm^2$. The stepwise 9 minutes- multi-pressing schedule in the maximum pressure 40kgf/$cm^2$, the minimum pressure 15kgf/$cm^2$ was applied for $480mm{\times}634mm{\times}12mm$ board at the temperature of $150^{\circ}C$ in a hot press. The results are as follows : I. In bonding strength, plywood which was made by F/U molar ratio 1.2 showed the highest value. Other molar ratio resin also gave the satisfied value of KS standard, 7.5kgf/$cm^2$. 2. In internal bond strength of particleboard, Sliver-Particleboard(SLPB) and Strand-Particleboard(STPB) varied respectively from 5.9kgf/$cm^2$ to 4.8kgf/$cm^2$, from 6.7kgf/$cm^2$ to 5.4kgf/$cm^2$. SLPB with F/U=1.2 and STPB with F/U=1.6 had higher IB value. Also, both SLPB and STPB showed lower IB value in F/U molar ratio 2.0 and 1.0. 3. SLPB and STPB with six kinds of UF resin respectively satisfied bending strength of KS standard 150 Type(130kgf/$cm^2$) and 200 Type(180kgf/$cm^2$). Bending strength data for both of SLPB and STPB showed little or no loss from F/U=1.8 to F/U=1.2. Also, STPB was approximately two times higher than that of SLPB. Therefore, the raw material's shape had more effect on bending strength than the FlU molar ratio. 4. F/U=1.6 and 1.4 showed the lower thickness swelling in SLPB and STPB. All of STPBs satisfied thickness swelling of KS standard, under 12%.

  • PDF

Machinability investigation and sustainability assessment in FDHT with coated ceramic tool

  • Panda, Asutosh;Das, Sudhansu Ranjan;Dhupal, Debabrata
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.681-698
    • /
    • 2020
  • The paper addresses contribution to the modeling and optimization of major machinability parameters (cutting force, surface roughness, and tool wear) in finish dry hard turning (FDHT) for machinability evaluation of hardened AISI grade die steel D3 with PVD-TiN coated (Al2O3-TiCN) mixed ceramic tool insert. The turning trials are performed based on Taguchi's L18 orthogonal array design of experiments for the development of regression model as well as adequate model prediction by considering tool approach angle, nose radius, cutting speed, feed rate, and depth of cut as major machining parameters. The models or correlations are developed by employing multiple regression analysis (MRA). In addition, statistical technique (response surface methodology) followed by computational approaches (genetic algorithm and particle swarm optimization) have been employed for multiple response optimization. Thereafter, the effectiveness of proposed three (RSM, GA, PSO) optimization techniques are evaluated by confirmation test and subsequently the best optimization results have been used for estimation of energy consumption which includes savings of carbon footprint towards green machining and for tool life estimation followed by cost analysis to justify the economic feasibility of PVD-TiN coated Al2O3+TiCN mixed ceramic tool in FDHT operation. Finally, estimation of energy savings, economic analysis, and sustainability assessment are performed by employing carbon footprint analysis, Gilbert approach, and Pugh matrix, respectively. Novelty aspects, the present work: (i) contributes to practical industrial application of finish hard turning for the shaft and die makers to select the optimum cutting conditions in a range of hardness of 45-60 HRC, (ii) demonstrates the replacement of expensive, time-consuming conventional cylindrical grinding process and proposes the alternative of costlier CBN tool by utilizing ceramic tool in hard turning processes considering technological, economical and ecological aspects, which are helpful and efficient from industrial point of view, (iii) provides environment friendliness, cleaner production for machining of hardened steels, (iv) helps to improve the desirable machinability characteristics, and (v) serves as a knowledge for the development of a common language for sustainable manufacturing in both research field and industrial practice.

Evaluation of incremental sheet forming characteristics for 3D-structured aluminum sheet - part 2 (3D 구조 알루미늄 판재의 점진판재성형 특성 평가 (제2보))

  • Kim, Young-Suk;Do, Van-Cuong;Ahn, Dae-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1585-1593
    • /
    • 2015
  • 3D-structured (embossed) aluminum sheets have been used in the heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement imposed in making the embossing pattern. However, there are many restrictions in press forming of the embossed sheet compared with the flat sheet (non-embossed one) because of its difference in the mechanical properties and the geometrical 3-dimensional shape. In this paper we investigated the deformation characteristic of embossed aluminum sheet in the incremental sheet forming process which has frequently used in the design verification and the trial manufacturing of sheet products. The single point incremental forming (SPIF) experiments for the rectangular cone forming using the CNC machine with a chemical wood-machined die and a circular tool shape showed that the formability of the embossed sheet are better than that of the flat sheet in view of the maximum angle of cone forming. This comes from the fact that the embossed sheet between the tool and the elastic die wall is plastically compressed and the flatted area contributes to increase the plastic deformation. Also the tool path along the outward movement from the center showed a better formability than that of the inward movement from the edge. However the surface quality for the tool path along the outward movement evaluated from the surface deflection is inferior than that of the tool path along the inward movement.

Study about shear bond strength of zirconia core used in dental prosthesis (치과 보철물에 사용되는 지르코니아 코어의 전단결합강도에 관한 연구)

  • Sim, Ji-Young;Kim, Jae-Hong;Kim, Woong-Chul;Kim, Hae-Young;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.33 no.4
    • /
    • pp.299-306
    • /
    • 2011
  • Purpose: This study aimed to investigate the shear bond strength by manufacturing the veneering porcelain on the IPS e.max $ZirCAD^{(R)}$ zirconia core, using the layering technique and heat-pressing technique, and to evaluate the clinical stability by comparing to the conventional metal ceramic system. Methods: The Schmitz-Schulmeyer test method was used to evaluate the core-veneer shear bond strength of zirconia core ceramic(IPS e.max $ZirCAD^{(R)}$) and their manufacture recommended two veneering ceramic systems(IPS e.max $ceram^{(R)}$, IPS e. max $ZirPress^{(R)}$). A metal ceramic system(Bellabond $plus^{(R)}$, VITA $VM13^{(R)}$) was used as a control group for the two all ceramic system test groups. The maximum loading and shear bond strength was measured. The average shear strength(MPa) was analyzed with the one-way ANOVA and the Tukey's test(${\alpha}$=.05). The fracture specimens were examined using Microscope to determine the failure pattern. Results: The mean shear bond strengths(SD) in MPa were MBSB control 43.62(2.13); ZBSB 18.65(1.76); ZPSB 18.89(1.54). The shear strengths of the zirconia cores were not significantly different(P>.05). Microscope examination showed that zirconia specimens presented mixed failure, and base metal alloy specimens showed adhesive failure. Conclusion: There was no siginificant different between the layering technique and the heat pressing technique in the veneering methods on the zirconia cores. None of the zirconia core and veneering ceramics could attain the high bond strength values of the metal ceramic combination.

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

A Study on the socio-economic impact of 3D Printing (3D프린팅이 사회·경제에 미치는 영향에 관한 연구)

  • Kim, Hyeon-Chang
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.23-31
    • /
    • 2015
  • With the expiration of main patent of printing method, public interest now has shifted to 3D printing. In this, it needs to shine a light on the negative effects, particularly in the socio-economic aspect of 3D printing. By analyzing the existing research findings, policy reports and press releases, the negative effects of 3D printing and its countermeasures were derived. The main drawbacks of 3D printing includes the following: It might cause 3D printing-related crimes(e.g. printed weapons, intellectual property infringement, etc.) and it poses a big threat to other related business sectors.(e.g. potential job loss in molding and medical equipments manufacturing industries) What's more, the nature of 3D printing that it is easy to operate attracts lots of people, which then leads to serious social and environmental problems-product liability, ethical issues, environmental pollution, and finally government's blindly excessive investment in 3D printing. To avoid such potential risks, the government should establish and enforce the institutional law, and guidelines. Government's rational investment decision is also inevitable for the short-term and long-term sustainability of 3D printing.

A Study on the Development of Large Aluminum Flange Using Casting/Forging Process (주조/단조 기술을 이용한 대형 알루미늄 플랜지 개발에 관한 연구)

  • Bae, Won-Byeong;Wang, Sin-Il;Seo, Myeong-Gyu;Jo, Jong-Rae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.9
    • /
    • pp.1438-1443
    • /
    • 2001
  • The significance of the casting/forging process for reducing the production cost of large components is being noted in these days. This casting/forging process is a method of forging a workpiece preformed by casting into the final shape. In this study, the casting/forging process has been applied in manufacturing a large aluminum flange in order to reduce press capacity and material cost. Firstly, a hot compression test was performed with cast cylindrical billets in order to determine the optimum forging condition of the aluminum flange. The optimum range of forging temperature of Al 5083 was from 420$\^{C}$ to 450$\^{C}$. The suitable strain rate was 1.5 sec(sup)-1. The deformation amount of a preform of a preform in a forging process is a key role in the mechanical properties of casting/forging products. In order to find the change of mechanical properties according to effective stain of cast aluminum billets, a hot upsetting test were performed with rectangular blocks and then a uniaxial tensile test was performed with specimens cut from the upsetted billets. The tensile strength and the elongation of cast/upsetted aluminum billets were increased largely until the effective strain was 0.7. FE analysis was performed to determine the configurations of case preform and die for an aluminum flange. In the FE analysis, the forging load-limit was fixed 1500ton for low equipment cost. The cast preform was designed so that the effective stain around the neck of a flange exceeded 0.7. From the result of FE analysis, optimal configurations of the cast preform and the die were designed for a large flange. The filling and solidification analysis for a sound cast-preform was carried out with MAGMA soft. In the forging experiment for an aluminum flange, it was confirmed that the optimal configuration of the cast preform predicted by FE analysis was very useful. The cast/forged products using designed preform were made perfectly without any defects.

Preparation and characterization of poly(dimethylsiloxane) foam prepared by hydrogen condensation reaction (수소 축합 반응에 의한 폴리디메틸실록산 미세 발포체의 제조 및 물성분석 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.4
    • /
    • pp.802-812
    • /
    • 2016
  • Silicone foam is very useful as flame resistant material for many industrial areas such as high performance gasketing, thermal shielding, vibration mounts, and press pads. A silicone foam was prepared through simultaneous crosslinking and foaming by hydrogen condensation reaction of a vinyl-containing polysiloxane (V-silicone) and a hydroxyl-containing polysiloxane (OH-silicone) with hydride containing polysiloxane (H-silicone) in the presence of platinum catalyst and imorganic filler at room temperature. This is more convenient process for silicone foam manufacturing than the conventional separated crosslinking and foaming systems. Funtionalized silicones we used in this experiment were consisted with a V-silicone containing 1,0 meq/g of vinyl groups and a viscosity of 20 Pa-s, an OH-silicone with 0.4 meq/g of hydroxyl groups and a viscosity from 50 Pa-s, and an H-silicone containing 7.5 meq/g of hydride groups and a viscosity of 0.06 Pa.s. The effects of compositions of functionalized silicones and additives, such as catalyst and filler on the structure and mechanical properties of silicone foam were studied. 0.5 wt% of Pt catalyst was enough to accelerate the foaming rate of silicone resins. The addition of OH-silicone with lower viscosity accelerates the initial foaming rate and decreases the foam density, but the addition of V-silicone with lower viscosity reduces the tensile strength as well as the elongation. The final foam density, tensile strength, and elogation of silicone foam prepared under the SF-3 condition increase maximum to $0.58g/cm^3$, $3,51kg_f/cm^2$, and 176 %, repectively. We found out the filler alumina also played an important role to improve the mechanical properties of silicone foams in our foaming system.