• 제목/요약/키워드: Press forging

검색결과 119건 처리시간 0.024초

원자력 발전소용 대형 튜브시트 단강품의 개발 (Development of the Large Tubesheet Forgings for Nuclear Power Plant)

  • 김동권;김영득;김동영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.176-179
    • /
    • 2006
  • Large tubesheet forgings of the steam generator for the 1,400MW nuclear power plant has been developed. Steam Generator is one of the most important structural part for nuclear power plant. It is manufactured by various steel forgings such as shell, head, torus and tubesheet. These steel forgings have been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the forging process development and manufacturing experience of large tubesheet forgings which will be used for the steam generator of 1,400MW nuclear power plant.

  • PDF

회전성형법에 의한 분말성형체의 고밀도화 연구 (The Cold Rotary Repressing Process of Sintered Preform)

  • 윤덕재;임성주;최석우;나경환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1997년도 춘계학술대회논문집
    • /
    • pp.281-286
    • /
    • 1997
  • Thin study is concerned with the cold repressing of sintered preform by rotary forging process. A experiment has been carried out using the rotary powder forging press(500kN) which was designed and constructed in the authors' laboratory. The effect of process variables and aspect ratios of sintered preform was observed and measured by several mechanical test, such as working force, hardness distribution, density, and microstructures of the specimens. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

6061 알루미늄합금 휠 단조공정의 해석 (An Analysis on the Forging Processes for 6061 Aluminum Alloy Wheel)

  • 김영훈;유태곤;황병복
    • 소성∙가공
    • /
    • 제8권5호
    • /
    • pp.498-506
    • /
    • 1999
  • The metal forming processes of aluminum alloy wheel forging at elevated temperature are analyzed by the finite element method. A coupled thermo-mechanical model for analysis of plastic deformation and geat transfer is adapted in the finite element formulation. In order to consider the strain-rate effects on material properties and the flow stress dependence on temperatures, rigid-viscoplasticity is introduced in this formation. In this paper, several process conditions were applied to the dimulation such as die speed, rib thickness, and depth of die cavity. Simulation results are compared, and discussed with each case. Metal flow, die pressure distributions, temperature distributions, velocity fields and forging loads are summarized as basic data for process design and selection of a proper press equipment.

  • PDF

원자로용 대형 헤드 단강품의 개발동향 (Development Trend of the Large Head Forgings for Reactor Vessel)

  • 김동권;김동영;김영득
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 제10회 단조 심포지엄
    • /
    • pp.131-139
    • /
    • 2005
  • Reactor Vessel is one of the most important structural part of nuclear power plant. It is manufactured by various steel forgings such as shell, head and transition ring. Head forgings has been made by open die forging process. After steel melting and ingot making, open die forging has been carried out to get a good quality which means high soundness and homogeniety of the steel forgings by using high capacity hydraulic press. This paper introduced the development trend of the open die forging process and manufacturing experience of large head forgings which canl be used for the reactor vessel of nuclear power plant.

  • PDF

평면변형 H-형재의 열간단조, 공정설계 및 금형설계 (Computer-Aided Process Planning and Die Design for Hot Forging of H-Shaped Plane Strain Components)

  • Park, J.C.;Kim, B.M.;Kim, S.W.
    • 한국정밀공학회지
    • /
    • 제11권2호
    • /
    • pp.104-109
    • /
    • 1994
  • This research describes some developments of computer-aided process planning and die design for hot forging products of H-shaped plane strain produced by the press. The system is composed of three main modules(process planning module, die design module and simulation module) which are used independently or in all. Systm capabilities include as follows: 1. In die design module, using the results of process planning module, the shape and size of bolcker and finish die in each operation are determined and the ouput id generated in graphic form for manufacturing drawing. 3. In simulation module, the flow pattern of workpiece and the load/stroke curve are approximately predicted. Design rules for process planning and die design are extracted from plasticity theories, handbooks, relevant references and empirical know-how of field experts in hot forging companies. The developed system provides poweful capabilities for process planning and die design of hot forging products.

  • PDF

난가공성 경량소재의 반용융 단조에 관한 기초 연구 (A fundamental study on semi-solid forging with light and hardly formable materials)

  • 최재찬;조해용;민규식;박형진;최종웅
    • 한국정밀공학회지
    • /
    • 제13권7호
    • /
    • pp.29-35
    • /
    • 1996
  • For semi-solid forging with aluminuim alloys, it is required to develope the globular grain structure. It was studide that cold upsetting ration in SIMA process has effect on the globularization of grain structure. Globular microstructure was generated without cold upsettings for commercial aluminium alloys. In the case of A12024, the range of grain size was 40 .approx. 50 .mu. m. The grain growth in growth in globular microstructure depend on heating time. Spur gear was forged in semi-solid state to investigate the forging condition for A12024 with hydraulic press.

  • PDF

C5210-H(HP)와 NKT322-EH 소재의 협피치 커텍터에서 단조 가공에 의한 소재 폭 변화에 관한 연구 (A study on the change of material width by forging processing in fine pitch connector of C5210-H(HP) and NKT322-EH materials)

  • 신미경;이춘규
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.17-22
    • /
    • 2020
  • As devices such as smartphones, tablet PC, and wearable devices have been miniaturized, the connectors that go into the devices are also designed to be very small. The connector combines the plug and the receptacle to transfer electricity. As devices are miniaturized, the contact shape is formed by partially thinning the thickness of the raw material of the terminal in order to lower the coupling height of the plug and receptacle. The product used in this study is a receptacle terminal used for 0.4mm pitch board to board connector among fine pitch connectors. When the material thickness is reduced by forging the receptacle terminal, the width change of the pin is checked. To reduce the thickness of the material by forging, pre-notching is applied in the first step, forging in the second step, and notching in the third step. After forming the width dimension of the pin to 0.28 mm in the pre-notching process, in the forging process, the material thickness 0.08 mm and 0.02 mm (25%) were forged and the thickness was changed to 0.06 mm and the width change amount of the pin was measured. The facility produced 10,000 pieces at 400 SPM using a Yamada Dobby (MXM-40L) press, and thirty pins were measured and the average value was shown. After forging by using C5210-H (HP) and NKT322-EH, which are frequently used in connectors, analyze the amount of change in each material. The effect of punching oil on forging is investigated by appling FM-200M, which is highly viscous, and FL-212, fast drying oil. This study aims to minimize mold modification by predicting the amount of material change after forging.

초내열 합금 배기 밸브 스핀들 단조 해석 및 기계적 특성 평가 (A Forging Analysis and Mechanical Properties Evaluation of Superalloy Exhaust Valve Spindle)

  • 최성규;오중석;정호승;조종래
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.84-88
    • /
    • 2009
  • The nickel-based alloy Nimonic 80A possesses strength, and corrosion, creep and oxidation resistance at high temperature. The exhaust valves of low speed diesel engines are usually operated at temperature levels of 400-$600^{\circ}C$ and high pressure to enhance thermal efficiency and exposed to the corrosion atmosphere by the exhaust gas. Also, the exhaust valve is subjected to repeated thermal and mechanical loads. So, the nickel-based alloy Nimonic 80A was used for the large exhaust valve spindle. It is composed a 540mm diameter head and a 125mm diameter stem. It is developed large products by hot closed-die forging. Manufacturing process analysis of the large exhaust valve spindle was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to $1080^{\circ}C$ Numerical calculation was performed by DEFORM-2D, a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. Mechanical properties of the large exhaust valve spindle were evaluated by the variety of tests, including microstructure observation, tensile, as well as hardness and fatigue tests, were conducted to evaluate the mechanical properties for head part of exhaust valve spindle.

  • PDF

미세조직 변화를 고려한 대형 배기밸브 스핀들 제조공정 해석 (A Manufacturing Process analysis of Large Exhaust Valve Spindle considering Microstructure Evolution)

  • 정호승;조종래;박희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.938-945
    • /
    • 2005
  • The microstructure evolution in hot forging process is composed of dynamic recrystallization during deformation as well as grain growth during dwell time. Therefore, the control of forging parameters such as strain, strain rate. temperature and holding time is important because the microstructure change in hot working affects the mechanical properties. Modeling equations are developed to represent the flow curve. grain size. recrystallized volume fraction and grain growth phenomena by various tests. The developed modeling equations were combined with thermo-viscoplastic finite element modeling to predict the microstructure change evolution during hot forging process. The large exhaust valve spindle (head diameter of 512mm) was simulated by closed die forging with hydraulic press and cooled in air after forging. The preform was heated to each 1080 and 1150$^{\circ}C$. Numerical calculation was performed by DEFORM-2D. a commercial finite element code. Heat transfer can be coupled with the deformation analysis in a non-isothermal deformation analysis. In order to obtain the fine and homogeneous microstructure and good mechanical properties in forging. the FEM would become a useful tool in the simulation of the microstructure development. In forging, appropriate temperature, strain and strain rate and rapid cooling are required to obtain the fine grain microstructure The optimal forging temperature and effective strain range of Nimonic 80A for large exhaust valve spindle are about 1080$\∼$l120$^{\circ}C$ and 150$\∼$200$\%$.

이종재료 접합을 위한 Self-Piercing Rivet의 단조공정설계 (Forging Process Design of Self-Piercing Rivet for Joining dissimilar Sheet Metals)

  • 김동범;이문용;박병준;박종권;조해용
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제36권6호
    • /
    • pp.802-807
    • /
    • 2012
  • SPR(Self-piercing rivet)은 판재 접합법으로서 스틸과 알루미늄 합금 등의 이종재료 접합에 사용되고 있다. 접합 공정은 피어싱을 포함한 소성변형이 함께 이루어진다. 프레스에서 펀치의 아래에 있는 리벳은 상부판재를 피어싱하고 하부 판재와 기계적으로 맞물리며 소성변형되어 결합된다. 본 논문에서는 SPR을 제작하기 위한 단조공정을 설계하였고, 이를 위하여 상용 유한요소해석 코드인 DEFORM-2D를 이용하여 해석하였다. 리벳 제작을 위한 단조공정의 설계에서 공정 순서, 성형성, 단조하중, 응력과 변형률 분포 등을 조사하였다. 또한 시뮬레이션 결과를 통하여 적합한 단조공정을 설계하였다. 설계된 공정은 업세팅, 헤드부 성형, 후방압출, 두 번째 챔퍼링의 네 단계로 구성된다. 그리고 단조공정에 대한 시뮬레이션 결과는 같은 조건을 적용한 실험 결과를 통하여 검증하였다.